[TOC]
# 簡介
Hive對文件中的分隔符默認情況下只支持單字節分隔符,,默認單字符是`\001`。當然你也可以在創建表格時指定數據的分割符號。但是如果數據文件中的分隔符是多字符的,如下圖:
~~~
01||zhangsan
02||lisi
03||wangwu
~~~
我們創建表
~~~
hive> create table t_test(id string,name string)
> row format delimited
> fields terminated by '||';
~~~
載入上面的數據
我們來查詢看下
~~~
hive> select * from t_test;
OK
01
02
03
~~~
發現后面的數據沒了,是因為hive默認只支持單字符分割
**補充:hive讀取數據的機制**
1. 首先用inputformat的一個具體的實現類讀取文件數據,返回一條條的記錄(可以是行,或者是你邏輯中的“行")
2. 然后利用SerDe<默認:org.apache.hadoop.hive.serde2.LazySimpleSerDe>的一個具體的實現類,對上面返回的一條條記錄進行字段切割
# RegexSerDe
使用RegexSerDe通過正則表達式來抽取字段
1. 建表
~~~
create table t_bi_reg(id string,name string)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'
with serdeproperties(
'input.regex'='(.*)\\|\\|(.*)',
'output.format.string'='%1$s%2$s'
)
stored as textfile;
~~~
`(.*)`表示匹配任意字符
`%1`正則表達第一個匹配的字符
2. 加載數據
~~~
01||zhangsan
02||lisi
03||wangwu
load data local inpath '/root/lianggang.txt' into table t_bi_reg;
~~~
3. 查詢
~~~
hive> select * from t_bi_reg;
OK
01 zhangsan
02 lisi
03 wangwu
~~~
# 自定義inputformat
通過自定義inputformat解決特殊分隔符問題
其原理是在inputformat讀取行的時候將數據中的“多字節分隔符”替換為hive默認的分隔符(ctrl+A 亦即 `\001`)或用于替代的單字符分隔符。以便hive在serde操作的時候按照默認的單字節分隔符進行字段抽取
查看源碼

## 第一種
~~~
package com.hive;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.LineRecordReader;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
public class BiDelimiterInputFormat extends TextInputFormat {
@Override
public RecordReader<LongWritable, Text> getRecordReader(InputSplit genericSplit, JobConf job, Reporter reporter)throws IOException {
reporter.setStatus(genericSplit.toString());
MyDemoRecordReader reader = new MyDemoRecordReader(new LineRecordReader(job, (FileSplit) genericSplit));
// BiRecordReader reader = new BiRecordReader(job, (FileSplit)genericSplit);
return reader;
}
public static class MyDemoRecordReader implements RecordReader<LongWritable, Text> {
LineRecordReader reader;
Text text;
//LineRecordReader給他重新賦值
public MyDemoRecordReader(LineRecordReader reader) {
this.reader = reader;
text = reader.createValue();
}
//下面都調用原來的方法
@Override
public void close() throws IOException {
reader.close();
}
@Override
public LongWritable createKey() {
return reader.createKey();
}
@Override
public Text createValue() {
return new Text();
}
@Override
public long getPos() throws IOException {
return reader.getPos();
}
@Override
public float getProgress() throws IOException {
return reader.getProgress();
}
@Override
public boolean next(LongWritable key, Text value) throws IOException {
//text是上面定義的,給他重新賦值
boolean next = reader.next(key, text);
if(next){
//把text的里面2個||替換成一個|,注意要轉義
String replaceText = text.toString().replaceAll("\\|\\|", "\\|");
//替換完成之后重新set進去
value.set(replaceText);
}
return next;
}
}
}
~~~
1. 打包成jar,放到`$HIVE_HOME/lib`下
2. 建表指明自定義的inputformat
inputformat是自己定義的
outputformat是默認的
~~~
//查看默認,后面是表名
desc formatted t_test;
~~~
~~~
create table t_lianggang(id string,name string)
row format delimited
fields terminated by '|'
stored as inputformat 'com.hive.BiDelimiterInputFormat'
outputformat 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';
~~~
3. 加載數據
~~~
01||zhangsan
02||lisi
03||wangwu
load data local inpath '/root/lianggang.txt' into table t_lianggang;
~~~
4. 查詢
~~~
hive> select * from t_lianggang;
OK
01 zhangsan
02 lisi
03 wangwu
~~~
## 第二種
~~~
package com.hive;
import java.io.IOException;
import java.io.InputStream;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.Seekable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CodecPool;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.Decompressor;
import org.apache.hadoop.io.compress.SplitCompressionInputStream;
import org.apache.hadoop.io.compress.SplittableCompressionCodec;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.LineRecordReader;
import org.apache.hadoop.mapred.RecordReader;
public class BiRecordReader implements RecordReader<LongWritable, Text> {
private static final Log LOG = LogFactory.getLog(LineRecordReader.class.getName());
private CompressionCodecFactory compressionCodecs = null;
private long start;
private long pos;
private long end;
private LineReader in;
int maxLineLength;
private Seekable filePosition;
private CompressionCodec codec;
private Decompressor decompressor;
/**
* A class that provides a line reader from an input stream.
*
* @deprecated Use {@link org.apache.hadoop.util.LineReader} instead.
*/
@Deprecated
public static class LineReader extends org.apache.hadoop.util.LineReader {
LineReader(InputStream in) {
super(in);
}
LineReader(InputStream in, int bufferSize) {
super(in, bufferSize);
}
public LineReader(InputStream in, Configuration conf) throws IOException {
super(in, conf);
}
}
public BiRecordReader(Configuration job, FileSplit split) throws IOException {
this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();
compressionCodecs = new CompressionCodecFactory(job);
codec = compressionCodecs.getCodec(file);
// open the file and seek to the start of the split
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
if (isCompressedInput()) {
decompressor = CodecPool.getDecompressor(codec);
if (codec instanceof SplittableCompressionCodec) {
final SplitCompressionInputStream cIn = ((SplittableCompressionCodec) codec).createInputStream(fileIn, decompressor, start, end, SplittableCompressionCodec.READ_MODE.BYBLOCK);
in = new LineReader(cIn, job);
start = cIn.getAdjustedStart();
end = cIn.getAdjustedEnd();
filePosition = cIn; // take pos from compressed stream
} else {
in = new LineReader(codec.createInputStream(fileIn, decompressor), job);
filePosition = fileIn;
}
} else {
fileIn.seek(start);
in = new LineReader(fileIn, job);
filePosition = fileIn;
}
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
if (start != 0) {
start += in.readLine(new Text(), 0, maxBytesToConsume(start));
}
this.pos = start;
}
private boolean isCompressedInput() {
return (codec != null);
}
private int maxBytesToConsume(long pos) {
return isCompressedInput() ? Integer.MAX_VALUE : (int) Math.min(Integer.MAX_VALUE, end - pos);
}
private long getFilePosition() throws IOException {
long retVal;
if (isCompressedInput() && null != filePosition) {
retVal = filePosition.getPos();
} else {
retVal = pos;
}
return retVal;
}
public BiRecordReader(InputStream in, long offset, long endOffset, int maxLineLength) {
this.maxLineLength = maxLineLength;
this.in = new LineReader(in);
this.start = offset;
this.pos = offset;
this.end = endOffset;
this.filePosition = null;
}
public BiRecordReader(InputStream in, long offset, long endOffset, Configuration job) throws IOException {
this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
this.in = new LineReader(in, job);
this.start = offset;
this.pos = offset;
this.end = endOffset;
this.filePosition = null;
}
public LongWritable createKey() {
return new LongWritable();
}
public Text createValue() {
return new Text();
}
/**
* Read a line.
*/
//要修改的地方
public synchronized boolean next(LongWritable key, Text value) throws IOException {
// We always read one extra line, which lies outside the upper
// split limit i.e. (end - 1)
while (getFilePosition() <= end) {
key.set(pos);
int newSize = in.readLine(value, maxLineLength, Math.max(maxBytesToConsume(pos), maxLineLength));
if (newSize == 0) {
return false;
}
//把要替換的||轉為|
String str = value.toString().replaceAll("\\|\\|", "\\|");
value.set(str);
pos += newSize;
if (newSize < maxLineLength) {
return true;
}
// line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos " + (pos - newSize));
}
return false;
}
/**
* Get the progress within the split
*/
public float getProgress() throws IOException {
if (start == end) {
return 0.0f;
} else {
return Math.min(1.0f, (getFilePosition() - start) / (float) (end - start));
}
}
public synchronized long getPos() throws IOException {
return pos;
}
public synchronized void close() throws IOException {
try {
if (in != null) {
in.close();
}
} finally {
if (decompressor != null) {
CodecPool.returnDecompressor(decompressor);
}
}
}
}
~~~
# 總結
字段少用正則好
字段多的話,用正則性能消耗大些
- linux
- 常用命令
- 高級文本命令
- 面試題
- redis
- String
- list
- hash
- set
- sortedSet
- 案例-推薦
- java高級特性
- 多線程
- 實現線程的三種方式
- 同步關鍵詞
- 讀寫鎖
- 鎖的相關概念
- 多線程的join
- 有三個線程T1 T2 T3,保證順序執行
- java五種線程池
- 守護線程與普通線程
- ThreadLocal
- BlockingQueue消息隊列
- JMS
- 反射
- volatile
- jvm
- IO
- nio
- netty
- netty簡介
- 案例一發送字符串
- 案例二發送對象
- 輕量級RPC開發
- 簡介
- spring(IOC/AOP)
- spring初始化順序
- 通過ApplicationContextAware加載Spring上下文
- InitializingBean的作用
- 結論
- 自定義注解
- zk在框架中的應用
- hadoop
- 簡介
- hadoop集群搭建
- hadoop單機安裝
- HDFS簡介
- hdfs基本操作
- hdfs環境搭建
- 常見問題匯總
- hdfs客戶端操作
- mapreduce工作機制
- 案列-單詞統計
- 局部聚合Combiner
- 案列-流量統計(分區,排序,比較)
- 案列-倒排索引
- 案例-共同好友
- 案列-join算法實現
- 案例-求topN(分組)
- 自定義inputFormat
- 自定義outputFormat
- 框架運算全流程
- mapreduce的優化方案
- HA機制
- Hive
- 安裝
- DDL操作
- 創建表
- 修改表
- DML操作
- Load
- insert
- select
- join操作
- 嚴格模式
- 數據類型
- shell參數
- 函數
- 內置運算符
- 內置函數
- 自定義函數
- Transform實現
- 特殊分割符處理
- 案例
- 級聯求和accumulate
- flume
- 簡介
- 安裝
- 常用的組件
- 攔截器
- 案例
- 采集目錄到HDFS
- 采集文件到HDFS
- 多個agent串聯
- 日志采集和匯總
- 自定義攔截器
- 高可用配置
- 使用注意
- sqoop
- 安裝
- 數據導入
- 導入數據到HDFS
- 導入關系表到HIVE
- 導入表數據子集
- 增量導入
- 數據導出
- 作業
- 原理
- azkaban
- 簡介
- 安裝
- 案例
- 簡介
- command類型單一job
- command類型多job工作流flow
- HDFS操作任務
- mapreduce任務
- hive腳本任務
- hbase
- 簡介
- 安裝
- 命令行
- 基本CURD
- 過濾器查詢
- 系統架構
- 物理存儲
- 尋址機制
- 讀寫過程
- Region管理
- master工作機制
- 建表高級屬性
- 與mapreduce結合
- 協處理器
- 點擊流平臺開發
- 簡介
- storm
- 簡介
- 安裝
- 集群啟動及任務過程分析
- 單詞統計
- 并行度
- ACK容錯機制
- ACK簡介