[TOC]
# 讀寫過程
## 讀請求過程:
1. 客戶端通過zookeeper以及root表和meta表找到目標數據所在的regionserver
2. 聯系regionserver查詢目標數據
3. regionserver定位到目標數據所在的region,發出查詢請求
4. region先在memstore中查找,命中則返回
5. 如果在memstore中找不到,則在storefile中掃描(**可能會掃描到很多的storefile----bloomfilter**)
布隆過濾器參數類型有2種:Row,column+row
## 寫請求過程:
1. client向region server提交寫請求
2. region server找到目標region
3. region檢查數據是否與schema(表描述信息)一致
4. 如果客戶端沒有指定版本,則獲取當前系統時間作為數據版本
5. 將更新寫入WAL log
6. 將更新寫入Memstore
7. 判斷Memstore的是否需要flush為Store文件。
# 細節描述
hbase使用MemStore和StoreFile存儲對表的更新。
數據在更新時首先寫入Log(WAL log)和內存(MemStore)中,MemStore中的數據是排序的,當MemStore累計到一定閾值時,就會創建一個新的MemStore,并 且將老的MemStore添加到flush隊列,由單獨的線程flush到磁盤上,成為一個StoreFile。于此同時,系統會在zookeeper中記錄一個redo point,表示這個時刻之前的變更已經持久化了。
當系統出現意外時,可能導致內存(MemStore)中的數據丟失,此時使用Log(WAL log)來恢復checkpoint之后的數據。
**StoreFile是只讀的,一旦創建后就不可以再修改。因此Hbase的更新其實是不斷追加的操作。當一個Store中的StoreFile達到一定的閾值后,就會進行一次合并(minor_compact, major_compact),將對同一個key的修改合并到一起,形成一個大的StoreFile,當StoreFile的大小達到一定閾值后,又會對 StoreFile進行split,等分為兩個StoreFile**
由于對表的更新是不斷追加的,compact時,需要訪問Store中全部的 StoreFile和MemStore,將他們按row key進行合并,由于StoreFile和MemStore都是經過排序的,并且StoreFile帶有內存中索引,合并的過程還是比較快。
- linux
- 常用命令
- 高級文本命令
- 面試題
- redis
- String
- list
- hash
- set
- sortedSet
- 案例-推薦
- java高級特性
- 多線程
- 實現線程的三種方式
- 同步關鍵詞
- 讀寫鎖
- 鎖的相關概念
- 多線程的join
- 有三個線程T1 T2 T3,保證順序執行
- java五種線程池
- 守護線程與普通線程
- ThreadLocal
- BlockingQueue消息隊列
- JMS
- 反射
- volatile
- jvm
- IO
- nio
- netty
- netty簡介
- 案例一發送字符串
- 案例二發送對象
- 輕量級RPC開發
- 簡介
- spring(IOC/AOP)
- spring初始化順序
- 通過ApplicationContextAware加載Spring上下文
- InitializingBean的作用
- 結論
- 自定義注解
- zk在框架中的應用
- hadoop
- 簡介
- hadoop集群搭建
- hadoop單機安裝
- HDFS簡介
- hdfs基本操作
- hdfs環境搭建
- 常見問題匯總
- hdfs客戶端操作
- mapreduce工作機制
- 案列-單詞統計
- 局部聚合Combiner
- 案列-流量統計(分區,排序,比較)
- 案列-倒排索引
- 案例-共同好友
- 案列-join算法實現
- 案例-求topN(分組)
- 自定義inputFormat
- 自定義outputFormat
- 框架運算全流程
- mapreduce的優化方案
- HA機制
- Hive
- 安裝
- DDL操作
- 創建表
- 修改表
- DML操作
- Load
- insert
- select
- join操作
- 嚴格模式
- 數據類型
- shell參數
- 函數
- 內置運算符
- 內置函數
- 自定義函數
- Transform實現
- 特殊分割符處理
- 案例
- 級聯求和accumulate
- flume
- 簡介
- 安裝
- 常用的組件
- 攔截器
- 案例
- 采集目錄到HDFS
- 采集文件到HDFS
- 多個agent串聯
- 日志采集和匯總
- 自定義攔截器
- 高可用配置
- 使用注意
- sqoop
- 安裝
- 數據導入
- 導入數據到HDFS
- 導入關系表到HIVE
- 導入表數據子集
- 增量導入
- 數據導出
- 作業
- 原理
- azkaban
- 簡介
- 安裝
- 案例
- 簡介
- command類型單一job
- command類型多job工作流flow
- HDFS操作任務
- mapreduce任務
- hive腳本任務
- hbase
- 簡介
- 安裝
- 命令行
- 基本CURD
- 過濾器查詢
- 系統架構
- 物理存儲
- 尋址機制
- 讀寫過程
- Region管理
- master工作機制
- 建表高級屬性
- 與mapreduce結合
- 協處理器
- 點擊流平臺開發
- 簡介
- storm
- 簡介
- 安裝
- 集群啟動及任務過程分析
- 單詞統計
- 并行度
- ACK容錯機制
- ACK簡介