<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                # 構造隨機數 ~~~ import numpy as np # 構造3行2列 # 值是從0到1的隨機數 print(np.random.rand(3, 2)) ~~~ 輸出 ~~~ [[ 0.605721 0.3173085 ] [ 0.7827691 0.01328121] [ 0.28464864 0.41312727]] ~~~ # 構造指定范圍的隨機數 ~~~ import numpy as np # 隨機數是0-10,左閉右開,維度是5行4列 randint = np.random.randint(10, size=(5, 4)) print(randint) ~~~ 返回 ~~~ [[1 9 9 7] [6 4 3 5] [4 6 1 3] [4 8 9 1] [9 9 0 5]] ~~~ # 返回一個數 ~~~ import numpy as np sample = np.random.random_sample() print(sample) ~~~ 輸出 ~~~ 0.7799226901559352 ~~~ 隨機整數 ~~~ import numpy as np # 0-10之間,3個隨機整數,不包含10 randint = np.random.randint(0, 10, 3) print(randint) ~~~ 返回 ~~~ 0.7799226901559352 ~~~ # 正態分布 ~~~ import numpy as np mu, sigma = 0, 0.1 # 我們要取10個數 normal = np.random.normal(mu, sigma, 10) print(normal) ~~~ 輸出 ~~~ [-0.12014471 0.05975655 0.02498604 0.03608821 -0.03849737 0.0780996 -0.02089003 -0.02095987 -0.04824946 0.16148243] ~~~ # 設置顯示精度 ~~~ import numpy as np # 小數點后顯示3位 np.set_printoptions(precision=3) mu, sigma = 0, 0.1 # 我們要取10個數 normal = np.random.normal(mu, sigma, 10) print(normal) ~~~ 輸出 ~~~ [-0.112 -0.035 0.09 0.119 -0.03 -0.017 0.055 0.123 0.128 -0.151] ~~~ # 洗牌 ~~~ import numpy as np arange = np.arange(10) print(arange) # 進行洗牌 np.random.shuffle(arange) print(arange) ~~~ 輸出 ~~~ [0 1 2 3 4 5 6 7 8 9] [4 7 9 0 3 2 6 8 1 5] ~~~ # 指定種子 比如我們調試程序的時候,我們對比2個實驗,我們希望隨機數不變來對比下 ~~~ import numpy as np # 設置種子 np.random.seed(10) mu, sigma = 0, 0.1 normal = np.random.normal(mu, sigma, 10) print(normal) ~~~ 無論輸出多少次,結果不變,在種子是一樣的情況下
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看