<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                [TOC] # datetime構造時間 ~~~ import datetime dt = datetime.datetime(year=2017, month=11, day=24, hour=10, minute=30) print(dt) ~~~ 輸出 ~~~ 2017-11-24 10:30:00 ~~~ # pandas構造時間 ~~~ import pandas as pd ts = pd.Timestamp('2017-11-24') print(ts) ~~~ 輸出 `2017-11-24 00:00:00` 或者to_datetime這種 ~~~ import pandas as pd datetime = pd.to_datetime('2017-11-24') to_datetime = pd.to_datetime('11/23/2017') print(datetime) print(to_datetime) ~~~ 輸出 ~~~ 2017-11-24 00:00:00 2017-11-23 00:00:00 ~~~ # 獲取月份,天數 ~~~ import pandas as pd # 用/寫注意順序 ts = pd.Timestamp('24/11/2017') # -的構造也能用這個 # 獲取月份 print(ts.month) print(ts.day) ~~~ 輸出 ~~~ 11 24 ~~~ # 增加天數 ~~~ import pandas as pd timestamp = pd.Timestamp('2018-05-01') # 注意單詞,是Timedelta rel = timestamp + pd.Timedelta('5 days') print(rel) ~~~ 輸出 `2018-05-06 00:00:00` # 構造一個Series結構 ~~~ import pandas as pd s = pd.Series(['2017-11-24 00:00:00', '2017-11-25 00:00:00', '2017-11-26 00:00:00']) print(s) ~~~ 輸出 ~~~ 0 2017-11-24 00:00:00 1 2017-11-25 00:00:00 2 2017-11-26 00:00:00 dtype: object ~~~ 把他們轉換成datatime格式 ~~~ import pandas as pd s = pd.Series(['2017-11-24 00:00:00', '2017-11-25 00:00:00', '2017-11-26 00:00:00']) datetime = pd.to_datetime(s) print(datetime) ~~~ 輸出 ~~~ 0 2017-11-24 1 2017-11-25 2 2017-11-26 dtype: datetime64[ns] ~~~ 獲取他們的小時和周 ~~~ import pandas as pd s = pd.Series(['2017-11-24 00:00:00', '2017-11-25 00:00:00', '2017-11-26 00:00:00']) datetime = pd.to_datetime(s) print(datetime.dt.hour) print('-'*30) # 周的不是按照中國的定義的,而是按照美國那邊定義的 print(datetime.dt.weekday) ~~~ 輸出 ~~~ 0 0 1 0 2 0 dtype: int64 ------------------------------ 0 4 1 5 2 6 dtype: int64 ~~~ # 構造Series數據 ~~~ import pandas as pd # 從2017-11-24開始,構造3個數據,每個間隔12H series = pd.Series(pd.date_range(start='2017-11-24', periods=3, frep='12H')) print(series) ~~~ 輸出 ~~~ 0 2017-11-24 1 2017-11-25 2 2017-11-26 dtype: datetime64[ns] ~~~ # 用pandas分析csv的日期 csv結構 ![](https://box.kancloud.cn/6ab0f4f20dab3d79a63182f02ca8fe17_1462x360.png) ~~~ import pandas as pd data = pd.read_csv('./flowdata.csv') head = data.head() print(head) ~~~ 輸出 ~~~ Time L06_347 LS06_347 LS06_348 0 2009-01-01 00:00:00 0.137417 0.097500 0.016833 1 2009-01-01 03:00:00 0.131250 0.088833 0.016417 2 2009-01-01 06:00:00 0.113500 0.091250 0.016750 3 2009-01-01 09:00:00 0.135750 0.091500 0.016250 4 2009-01-01 12:00:00 0.140917 0.096167 0.017000 ~~~ ## 讀取后設置索引 ~~~ import pandas as pd data = pd.read_csv('./flowdata.csv').head() # 把時間轉換為datetime結構 data['Time'] = pd.to_datetime(data['Time']) # 設置索引為datetime data = data.set_index('Time') print(data) print('-'*30) # 打印索引 print(data.index) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2009-01-01 00:00:00 0.137417 0.097500 0.016833 2009-01-01 03:00:00 0.131250 0.088833 0.016417 2009-01-01 06:00:00 0.113500 0.091250 0.016750 2009-01-01 09:00:00 0.135750 0.091500 0.016250 2009-01-01 12:00:00 0.140917 0.096167 0.017000 ------------------------------ DatetimeIndex(['2009-01-01 00:00:00', '2009-01-01 03:00:00', '2009-01-01 06:00:00', '2009-01-01 09:00:00', '2009-01-01 12:00:00'], dtype='datetime64[ns]', name='Time', freq=None) ~~~ ## 讀取時設置索引列,并格式化 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True).head() print(data) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2009-01-01 00:00:00 0.137417 0.097500 0.016833 2009-01-01 03:00:00 0.131250 0.088833 0.016417 2009-01-01 06:00:00 0.113500 0.091250 0.016750 2009-01-01 09:00:00 0.135750 0.091500 0.016250 2009-01-01 12:00:00 0.140917 0.096167 0.017000 ~~~ ## 分片獲取數據 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True) # 分片獲取數據 # 也可以這樣寫 # data[('2012-01-01 09:00'):('2012-01-01 19:00')] # 分片也支持這樣 data['2012-01':'2012-03'] dt = data[pd.Timestamp('2012-01-01 09:00'):pd.Timestamp('2012-01-01 19:00')] print(dt) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2012-01-01 09:00:00 0.330750 0.293583 0.029750 2012-01-01 12:00:00 0.295000 0.285167 0.031750 2012-01-01 15:00:00 0.301417 0.287750 0.031417 2012-01-01 18:00:00 0.322083 0.304167 0.038083 ~~~ ## 獲取倒數10個數據 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True).tail(10) print(data) ~~~ ## 獲取某一年的數據 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True) # 獲取某一年的數據 print(data['2013']) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2013-01-01 00:00:00 1.688333 1.688333 0.207333 2013-01-01 03:00:00 2.693333 2.693333 0.201500 2013-01-01 06:00:00 2.220833 2.220833 0.166917 ~~~ ## 獲取都是某個月份的數據 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True) # 獲取全部都是1月的數據 dt = data[data.index.month == 1] print(dt.head()) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2009-01-01 00:00:00 0.137417 0.097500 0.016833 2009-01-01 03:00:00 0.131250 0.088833 0.016417 2009-01-01 06:00:00 0.113500 0.091250 0.016750 2009-01-01 09:00:00 0.135750 0.091500 0.016250 2009-01-01 12:00:00 0.140917 0.096167 0.017000 ~~~ # 獲取指定時間內的數據 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True) # 獲取8-12小時的數據 # 也可以這樣 data.between_time('08:00', '12:00') dt = data[(data.index.hour > 8) & (data.index.hour < 12)] print(dt.head()) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2009-01-01 09:00:00 0.135750 0.091500 0.016250 2009-01-02 09:00:00 0.141917 0.097083 0.016417 2009-01-03 09:00:00 0.124583 0.084417 0.015833 2009-01-04 09:00:00 0.109000 0.105167 0.018000 2009-01-05 09:00:00 0.161500 0.114583 0.021583 ~~~ # 重采樣 按天重采樣求均值 ~~~ import pandas as pd # 設置索引列,對索引列進行格式化 data = pd.read_csv('./flowdata.csv', index_col=0, parse_dates=True) # 按3天 data.resample('3D').mean().head() # 按月 data.resample('M').mean().head() # 按天采樣就最大值 data.resample('D').max().head() dt = data.resample('D').mean().head() print(dt) ~~~ 輸出 ~~~ L06_347 LS06_347 LS06_348 Time 2009-01-01 0.125010 0.092281 0.016635 2009-01-02 0.124146 0.095781 0.016406 2009-01-03 0.113562 0.085542 0.016094 2009-01-04 0.140198 0.102708 0.017323 2009-01-05 0.128812 0.104490 0.018167 ~~~
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看