<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                [TOC] # 構造一個DataFrame結構 ~~~ import pandas as pd data = {'country': ['aaa', 'bbb', 'ccc'], 'population': [10, 12, 14]} frame = pd.DataFrame(data) print(frame) ~~~ 輸出 ~~~ country population 0 aaa 10 1 bbb 12 2 ccc 14 ~~~ 構造出來的DataFrame也能打印出info這些信息 # 取指定的數據 cvs是這樣 ![](https://box.kancloud.cn/dc9f5e502c1c485d15a2d3fdb38dd667_1612x394.png) 我們取出里面的Age值 ~~~ import pandas as pd csv = pd.read_csv('./titanic.csv') print(csv['Age']) ~~~ 輸出 左側0,1,2,3是索引 ![](https://box.kancloud.cn/a7579236bad3f72cdd71debbc0bd0e10_450x458.png) 這些行有空值 如果要取出前5個 `print(csv['Age'][:5])` # 指定索引 ~~~ import pandas as pd csv = pd.read_csv('./titanic.csv') # 設置左側索引 index = csv.set_index('Name') print(index['Age'][:5]) ~~~ 輸出 ~~~ Name Braund, Mr. Owen Harris 22.0 Cumings, Mrs. John Bradley (Florence Briggs Thayer) 38.0 Heikkinen, Miss. Laina 26.0 Futrelle, Mrs. Jacques Heath (Lily May Peel) 35.0 Allen, Mr. William Henry 35.0 Name: Age, dtype: float64 ~~~ # 根據索引找對應的值 ~~~ import pandas as pd csv = pd.read_csv('./titanic.csv') # 設置左側索引 index = csv.set_index('Name') # 根據名字這個索引找他的年齡 # 索引和年齡 age = index['Age'] print(age['Braund, Mr. Owen Harris']) ~~~ 輸出 ~~~ 22.0 ~~~ # 運算 ~~~ import pandas as pd csv = pd.read_csv('./titanic.csv') # 設置左側索引 index = csv.set_index('Name') # 索引和年齡 age = index['Age'] age1 = age * 10 print(age1) ~~~ 輸出 ~~~ Name Braund, Mr. Owen Harris 22.0 Cumings, Mrs. John Bradley (Florence Briggs Thayer) 38.0 Heikkinen, Miss. Laina 26.0 Futrelle, Mrs. Jacques Heath (Lily May Peel) 35.0 Allen, Mr. William Henry 35.0 Moran, Mr. James NaN ~~~ 他的運算不影響原來的值,運算的結果需要新的值類來接收 # 求最小值,最大值,mean值 ~~~ import pandas as pd csv = pd.read_csv('./titanic.csv') # 設置左側索引 index = csv.set_index('Name') # 索引和年齡 age = index['Age'] # 求最小值 age_min = age.min() print(age_min) # 求最大值 age_max = age.max() print(age_max) # 求mean值 mean = age.mean() print(mean) ~~~ 輸出 ~~~ 0.42 80.0 29.6991176471 ~~~ # 觀察數據的基本統計特性 ~~~ import pandas as pd csv = pd.read_csv('./titanic.csv') describe = csv.describe() print(describe) ~~~ 輸出 ![](https://box.kancloud.cn/909b3224ea925c18a2ffd2f9217f84b4_1228x406.png)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看