<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                [TOC] # 創建DataFrame ~~~ import pandas as pd # key,A,B是列,里面是值 left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) print(left) ~~~ 輸出 ~~~ A B key 0 A0 B0 K0 1 A1 B1 K1 2 A2 B2 K2 3 A3 B3 K3 ~~~ # on ~~~ # on表示以這個key為鍵 res = pd.merge(left, right, on='key') print(res) ~~~ 輸出 ~~~ A B key C D 0 A0 B0 K0 C0 D0 1 A1 B1 K1 C1 D1 2 A2 B2 K2 C2 D2 3 A3 B3 K3 C3 D3 ~~~ **on也可以指定多個key** 如果有不一樣的那行會被忽略 ~~~ import pandas as pd left = pd.DataFrame({'key1': ['K0', 'K1', 'K2', 'K3'], 'key2': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key1': ['K0', 'K1', 'K2', 'K3'], 'key2': ['K0', 'K1', 'K2', 'K4'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) res = pd.merge(left, right, on=['key1', 'key2']) print(res) ~~~ 輸出 ~~~ A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A1 B1 K1 K1 C1 D1 2 A2 B2 K2 K2 C2 D2 ~~~ **如果指定key1的話,他會把key1的合并起來,其他的列名相同也不會合并** ~~~ res = pd.merge(left, right, on='key1') print(res) ~~~ 輸出 ~~~ A B key1 key2_x C D key2_y 0 A0 B0 K0 K0 C0 D0 K0 1 A1 B1 K1 K1 C1 D1 K1 2 A2 B2 K2 K2 C2 D2 K2 3 A3 B3 K3 K3 C3 D3 K4 ~~~ **指定多個key,并集,沒有的值顯示NaN** ~~~ res = pd.merge(left, right, on=['key1', 'key2'], how='outer') print(res) ~~~ 輸出 ~~~ A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A1 B1 K1 K1 C1 D1 2 A2 B2 K2 K2 C2 D2 3 A3 B3 K3 K3 NaN NaN 4 NaN NaN K3 K4 C3 D3 ~~~ **查看并集的情況** ~~~ res = pd.merge(left, right, on=['key1', 'key2'], how='outer', indicator=True) print(res) ~~~ 輸出 ~~~ A B key1 key2 C D _merge 0 A0 B0 K0 K0 C0 D0 both 1 A1 B1 K1 K1 C1 D1 both 2 A2 B2 K2 K2 C2 D2 both 3 A3 B3 K3 K3 NaN NaN left_only 4 NaN NaN K3 K4 C3 D3 right_only ~~~ **左連接** ~~~ res = pd.merge(left, right, on=['key1', 'key2'], how='left') print(res) ~~~ 輸出 ~~~ A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A1 B1 K1 K1 C1 D1 2 A2 B2 K2 K2 C2 D2 3 A3 B3 K3 K3 NaN NaN ~~~ **右連接** ~~~ res = pd.merge(left, right, on=['key1', 'key2'], how='right') print(res) ~~~ 輸出 ~~~ A B key1 key2 C D 0 A0 B0 K0 K0 C0 D0 1 A1 B1 K1 K1 C1 D1 2 A2 B2 K2 K2 C2 D2 3 NaN NaN K3 K4 C3 D3 ~~~
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看