<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                一、場景描述 很多做服務接口的人或多或少的遇到這樣的場景,由于業務應用系統的負載能力有限,為了防止非預期的請求對系統壓力過大而拖垮業務應用系統。 也就是面對大流量時,如何進行流量控制? 服務接口的流量控制策略:分流、降級、限流等。本文討論下限流策略,雖然降低了服務接口的訪問頻率和并發量,卻換取服務接口和業務應用系統的高可用。 實際場景中常用的限流策略: Nginx前端限流 按照一定的規則如帳號、IP、系統調用邏輯等在Nginx層面做限流 業務應用系統限流 1、客戶端限流 2、服務端限流 數據庫限流 紅線區,力保數據庫 二、常用的限流算法 常用的限流算法由:樓桶算法和令牌桶算法。本文不具體的詳細說明兩種算法的原理,原理會在接下來的文章中做說明。 1、漏桶算法 漏桶(Leaky Bucket)算法思路很簡單,水(請求)先進入到漏桶里,漏桶以一定的速度出水(接口有響應速率),當水流入速度過大會直接溢出(訪問頻率超過接口響應速率),然后就拒絕請求,可以看出漏桶算法能強行限制數據的傳輸速率.示意圖如下:     可見這里有兩個變量,一個是桶的大小,支持流量突發增多時可以存多少的水(burst),另一個是水桶漏洞的大小(rate)。 因為漏桶的漏出速率是固定的參數,所以,即使網絡中不存在資源沖突(沒有發生擁塞),漏桶算法也不能使流突發(burst)到端口速率.因此,漏桶算法對于存在突發特性的流量來說缺乏效率. 2、令牌桶算法 令牌桶算法(Token Bucket)和 Leaky Bucket 效果一樣但方向相反的算法,更加容易理解.隨著時間流逝,系統會按恒定1/QPS時間間隔(如果QPS=100,則間隔是10ms)往桶里加入Token(想象和漏洞漏水相反,有個水龍頭在不斷的加水),如果桶已經滿了就不再加了.新請求來臨時,會各自拿走一個Token,如果沒有Token可拿了就阻塞或者拒絕服務.   令牌桶的另外一個好處是可以方便的改變速度. 一旦需要提高速率,則按需提高放入桶中的令牌的速率. 一般會定時(比如100毫秒)往桶中增加一定數量的令牌, 有些變種算法則實時的計算應該增加的令牌的數量. 三、基于Redis功能的實現 簡陋的設計思路:假設一個用戶(用IP判斷)每分鐘訪問某一個服務接口的次數不能超過10次,那么我們可以在Redis中創建一個鍵,并此時我們就設置鍵的過期時間為60秒,每一個用戶對此服務接口的訪問就把鍵值加1,在60秒內當鍵值增加到10的時候,就禁止訪問服務接口。在某種場景中添加訪問時間間隔還是很有必要的。 1)使用Redis的incr命令,將計數器作為Lua腳本 local current current = redis.call("incr",KEYS[1]) if tonumber(current) == 1 then redis.call("expire",KEYS[1],1) end Lua腳本在Redis中運行,保證了incr和expire兩個操作的原子性。 2)使用Reids的列表結構代替incr命令 FUNCTION LIMIT_API_CALL(ip) current = LLEN(ip) IF current > 10 THEN ERROR "too many requests per second" ELSE IF EXISTS(ip) == FALSE MULTI RPUSH(ip,ip) EXPIRE(ip,1) EXEC ELSE RPUSHX(ip,ip) END PERFORM_API_CALL() END Rate Limit使用Redis的列表作為容器,LLEN用于對訪問次數的檢查,一個事物中包含了RPUSH和EXPIRE兩個命令,用于在第一次執行計數是創建列表并設置過期時間, RPUSHX在后續的計數操作中進行增加操作。 四、基于令牌桶算法的實現 令牌桶算法可以很好的支撐突然額流量的變化即滿令牌桶數的峰值。 五、 Guava并發:ListenableFuture與RateLimiter示例 概念 ListenableFuture顧名思義就是可以監聽的Future,它是對Java原生Future的擴展增強。我們知道Future表示一個異步計算任務,當任務完成時可以得到計算結果。如果我們希望一旦計算完成就拿到結果展示給用戶或者做另外的計算,就必須使用另一個線程不斷的查詢計算狀態。這樣做,代碼復雜,而且效率低下。使用ListenableFuture Guava幫我們檢測Future是否完成了,如果完成就自動調用回調函數,這樣可以減少并發程序的復雜度。 推薦使用第二種方法,因為第二種方法可以直接得到Future的返回值,或者處理錯誤情況。本質上第二種方法是通過調動第一種方法實現的,做了進一步的封裝。 另外ListenableFuture還有其他幾種內置實現: SettableFuture:不需要實現一個方法來計算返回值,而只需要返回一個固定值來做為返回值,可以通過程序設置此Future的返回值或者異常信息 CheckedFuture: 這是一個繼承自ListenableFuture接口,他提供了checkedGet()方法,此方法在Future執行發生異常時,可以拋出指定類型的異常。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看