<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ## 主成分分析及展示 ### 應用 主成分分析(PCA),個人理解是將高維數據上的點投射到新的坐標系,從而達到降維的目的,同時也可以看看哪些點的數據特征相近,比如,我們利用多個基因的表達量看看腫瘤和正常組織是否可以正常的分開 > 所使用的數據依然是上一章節heatmap所用的數據 ```R load('./test_exp.Rdata') #rt ``` > 準備PCA所需數據 ```R library(gmodels) mat_a <- t(as.matrix(rt)) mat_pca <- fast.prcomp(mat_a, scale = T) # do PCA sum_a <- summary(mat_pca) tmp <- sum_a$importance # a include 4 sections which contain importance pro1 <- as.numeric(sprintf("%.3f", tmp[2,1]))*100 pro2 <- as.numeric(sprintf("%.3f", tmp[2,2]))*100 # fetch the proportion of PC1 and PC2 pc <- as.data.frame(sum_a$x) # convert to data.frame ``` > pc數據結構如下 ![data format](http://kancloud.nordata.cn/2018-12-30-074358.png) ```R # 準備分組和顏色參數設置 pc$group <- c(rep('tumor', 57), rep('normal', 57)) pc$color <- c(rep('#6D9EC1', 57), rep('#E46726', 57)) pc$group <- factor(pc$group, levels = unique(pc$group)) xlab <- paste("PC1(", pro1, "%)", sep = "") ylab <- paste("PC2(", pro2, "%)", sep = "") ``` > 利用ggplot展示結果 ```R library(ggplot2) PCA1 <- ggplot(pc, aes(PC1, PC2, color = group)) + geom_point(size = 5) + scale_colour_manual(values = unique(pc$color)) + labs(x = xlab, y = ylab) print(PCA1) # 更換個主題 PCA2 <- ggplot(pc, aes(PC1, PC2, color = group)) + geom_point(size = 5) + scale_colour_manual(values = unique(pc$color)) + labs(x = xlab, y = ylab) + theme_bw() print(PCA2) ``` ![PCA1](http://kancloud.nordata.cn/2018-12-30-74359.png)![PCA2](http://kancloud.nordata.cn/2018-12-30-074409.png)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看