# 8.2 異步計算
此節內容對應PyTorch的版本本人沒怎么用過,網上參考資料也比較少,所以略:),有興趣的可以去看看[原文](https://zh.d2l.ai/chapter_computational-performance/async-computation.html)。
關于PyTorch的異步執行我只在[官方文檔](https://pytorch.org/docs/stable/notes/cuda.html)找到了一段:
> By default, GPU operations are asynchronous. When you call a function that uses the GPU, the operations are enqueued to the particular device, but not necessarily executed until later. This allows us to execute more computations in parallel, including operations on CPU or other GPUs.
In general, the effect of asynchronous computation is invisible to the caller, because (1) each device executes operations in the order they are queued, and (2) PyTorch automatically performs necessary synchronization when copying data between CPU and GPU or between two GPUs. Hence, computation will proceed as if every operation was executed synchronously.
You can force synchronous computation by setting environment variable CUDA_LAUNCH_BLOCKING=1. This can be handy when an error occurs on the GPU. (With asynchronous execution, such an error isn’t reported until after the operation is actually executed, so the stack trace does not show where it was requested.)
大致翻譯一下就是:
默認情況下,PyTorch中的 GPU 操作是異步的。當調用一個使用 GPU 的函數時,這些操作會在特定的設備上排隊但不一定會在稍后立即執行。這就使我們可以并行更多的計算,包括 CPU 或其他 GPU 上的操作。
一般情況下,異步計算的效果對調用者是不可見的,因為(1)每個設備按照它們排隊的順序執行操作,(2)在 CPU 和 GPU 之間或兩個 GPU 之間復制數據時,PyTorch會自動執行必要的同步操作。因此,計算將按每個操作同步執行的方式進行。
可以通過設置環境變量`CUDA_LAUNCH_BLOCKING = 1`來強制進行同步計算。當 GPU 產生error時,這可能非常有用。(異步執行時,只有在實際執行操作之后才會報告此類錯誤,因此堆棧跟蹤不會顯示請求的位置。)
- Home
- Introduce
- 1.深度學習簡介
- 深度學習簡介
- 2.預備知識
- 2.1環境配置
- 2.2數據操作
- 2.3自動求梯度
- 3.深度學習基礎
- 3.1 線性回歸
- 3.2 線性回歸的從零開始實現
- 3.3 線性回歸的簡潔實現
- 3.4 softmax回歸
- 3.5 圖像分類數據集(Fashion-MINST)
- 3.6 softmax回歸的從零開始實現
- 3.7 softmax回歸的簡潔實現
- 3.8 多層感知機
- 3.9 多層感知機的從零開始實現
- 3.10 多層感知機的簡潔實現
- 3.11 模型選擇、反向傳播和計算圖
- 3.12 權重衰減
- 3.13 丟棄法
- 3.14 正向傳播、反向傳播和計算圖
- 3.15 數值穩定性和模型初始化
- 3.16 實戰kaggle比賽:房價預測
- 4 深度學習計算
- 4.1 模型構造
- 4.2 模型參數的訪問、初始化和共享
- 4.3 模型參數的延后初始化
- 4.4 自定義層
- 4.5 讀取和存儲
- 4.6 GPU計算
- 5 卷積神經網絡
- 5.1 二維卷積層
- 5.2 填充和步幅
- 5.3 多輸入通道和多輸出通道
- 5.4 池化層
- 5.5 卷積神經網絡(LeNet)
- 5.6 深度卷積神經網絡(AlexNet)
- 5.7 使用重復元素的網絡(VGG)
- 5.8 網絡中的網絡(NiN)
- 5.9 含并行連結的網絡(GoogLeNet)
- 5.10 批量歸一化
- 5.11 殘差網絡(ResNet)
- 5.12 稠密連接網絡(DenseNet)
- 6 循環神經網絡
- 6.1 語言模型
- 6.2 循環神經網絡
- 6.3 語言模型數據集(周杰倫專輯歌詞)
- 6.4 循環神經網絡的從零開始實現
- 6.5 循環神經網絡的簡單實現
- 6.6 通過時間反向傳播
- 6.7 門控循環單元(GRU)
- 6.8 長短期記憶(LSTM)
- 6.9 深度循環神經網絡
- 6.10 雙向循環神經網絡
- 7 優化算法
- 7.1 優化與深度學習
- 7.2 梯度下降和隨機梯度下降
- 7.3 小批量隨機梯度下降
- 7.4 動量法
- 7.5 AdaGrad算法
- 7.6 RMSProp算法
- 7.7 AdaDelta
- 7.8 Adam算法
- 8 計算性能
- 8.1 命令式和符號式混合編程
- 8.2 異步計算
- 8.3 自動并行計算
- 8.4 多GPU計算
- 9 計算機視覺
- 9.1 圖像增廣
- 9.2 微調
- 9.3 目標檢測和邊界框
- 9.4 錨框
- 10 自然語言處理
- 10.1 詞嵌入(word2vec)
- 10.2 近似訓練
- 10.3 word2vec實現
- 10.4 子詞嵌入(fastText)
- 10.5 全局向量的詞嵌入(Glove)
- 10.6 求近義詞和類比詞
- 10.7 文本情感分類:使用循環神經網絡
- 10.8 文本情感分類:使用卷積網絡
- 10.9 編碼器--解碼器(seq2seq)
- 10.10 束搜索
- 10.11 注意力機制
- 10.12 機器翻譯