<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                先介紹一下python3下 import numpy的用法: ``` import numpy as np A=np.array([[1,0,0],[0,1,0],[1,1,0] ]) b=np.array([2,2,1]) print(np.dot(A.T,b)) C=np.array([[1,0,0],[0,1,0],[2,5,9] ]) print(np.dot(C.T,b) ) A=np.array([[1,0,0],[0,1,0],[20,50,90]]) print(np.dot(A.T,b)) ``` 上面代碼的結果是: ``` [3 3 0] [4 7 9] [22 52 90] ``` # 從零實現一個神經網絡 ``` import numpy as nump0y001 def sigmoid(x): # Our activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + nump0y001.exp(-x)) class Neuron: def __init__(self, weights, bias): self.weights = weights self.bias = bias def feedforward(self, inputs): # Weight inputs, add bias, then use the activation function total = nump0y001.dot(self.weights, inputs) + self.bias return sigmoid(total) weights = nump0y001.array([0, 1]) # w1 = 0, w2 = 1 bias = 4 # b = 4 n02 = Neuron(weights, bias) x = nump0y001.array([2, 3]) # x1 = 2, x2 = 3 print(n02.feedforward(x)) # 0.9990889488055994 ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看