<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                # 平行向量的除法 &emsp;&emsp;平行向量之間的除法的結果是一個實數,如下圖所示,假設藍色向量是a,紅色向量是b,兩向量的關系是b=2a,則b/a = 2 ![](https://box.kancloud.cn/04728defe344c5276642546705fdef38_798x800.png) &emsp;&emsp;若向量b = at,則t = b/a(向量a不為零向量)。雖然公式是這么寫,但是細細推導,可以將平行向量的除法用向量的點積表示。 &emsp;&emsp;試想想,兩向量平行,b=at。則兩向量的夾角只可能是0或PI,則cos<a,b>=1或-1。這表示的是向量b與向量a同向或不同向,如果t>0,則cos<a,b>=1,若t<0,則cos<a,b> = -1。在數值上,|t| = |b|/|a|。 &emsp;&emsp;由此,t = (|b|/|a|)cos<a,b> = (|b|/|a|)(ab/(|a||b|)) = ab/(|a|^2)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看