[TOC]
# 函數作為返回值
高階函數除了可以接受函數作為參數外,還可以把函數作為結果值返回。
我們來實現一個可變參數的求和。通常情況下,求和的函數是這樣定義的:
~~~
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax
~~~
但是,如果不需要立刻求和,而是在后面的代碼中,根據需要再計算怎么辦?可以不返回求和的結果,而是返回求和的函數:
~~~
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
~~~
當我們調用lazy_sum()時,返回的并不是求和結果,而是求和函數:
~~~
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>
~~~
調用函數f時,才真正計算求和的結果:
~~~
>>> f()
25
~~~
在這個例子中,我們在函數`lazy_sum`中又定義了函數sum,并且,內部函數sum可以引用外部函數`lazy_sum`的參數和局部變量,當`lazy_sum`返回函數sum時,相關參數和變量都保存在返回的函數中,這種稱為“閉包(Closure)”的程序結構擁有極大的威力。
請再注意一點,當我們調用`lazy_sum()`時,每次調用都會返回一個新的函數,即使傳入相同的參數:
~~~
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
~~~
f1()和f2()的調用結果互不影響
# 閉包
注意到返回的函數在其定義內部引用了局部變量args,所以,當一個函數返回了一個函數后,其內部的局部變量還被新函數引用,所以,閉包用起來簡單,實現起來可不容易。
另一個需要注意的問題是,返回的函數并沒有立刻執行,而是直到調用了f()才執行。我們來看一個例子:
~~~
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
~~~
在上面的例子中,每次循環,都創建了一個新的函數,然后,把創建的3個函數都返回了。
你可能認為調用f1(),f2()和f3()結果應該是1,4,9,但實際結果是:
~~~
>>> f1()
9
>>> f2()
9
>>> f3()
9
~~~
全部都是9!原因就在于返回的函數引用了變量i,但它并非立刻執行。等到3個函數都返回時,它們所引用的變量i已經變成了3,因此最終結果為9
**返回閉包時牢記一點:返回函數不要引用任何循環變量,或者后續會發生變化的變量**
如果一定要引用循環變量怎么辦?方法是再創建一個函數,用該函數的參數綁定循環變量當前的值,無論該循環變量后續如何更改,已綁定到函數參數的值不變:
~~~
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被執行,因此i的當前值被傳入f()
return fs
~~~
再看看結果:
~~~
>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9
~~~
缺點是代碼較長,可利用lambda函數縮短代碼
## 使用外函數變量
~~~
x = 300
def test1():
x = 200
def test2():
nonlocal x
print("---1---x=%d" % x)
x = 100
print('---2---x=%d' % x)
return test2
t1 = test1()
t1()
~~~
需要加nonlocal
如果是全局變量,那就需要加global
- python入門
- 軟件安裝
- anaconda使用
- py解釋器
- 數據類型和變量
- 編碼
- 字符串
- 格式化
- 數據類型
- 運算符
- list和tuple
- 列表生成式
- dict和set
- 切片和迭代
- set,list,tuple之間互換
- is和==
- 公共方法
- 反射操作
- 數學運算
- 類型轉換
- 對象操作
- 序列操作
- 運算符
- 內置函數
- 交互操作
- 編譯執行
- 引用
- 判斷,循環
- 生成器
- 迭代器
- 函數
- 數據類型轉換
- 空函數
- 參數
- 全局變量
- 返回值
- 遞歸
- 匿名函數
- 文件操作
- 打開和關閉
- 讀寫
- 備份文件
- 文件定位讀寫
- 重命名,刪除
- 文件夾相關操作
- with
- StringIO和BytesIO
- 操作文件和目錄
- 序列化
- 文件屬性
- 面向對象
- 類和對象
- init()方法
- 魔法方法
- 繼承
- 重寫
- 多態
- 類屬性,實例屬性
- 靜態方法和類方法
- 工廠模式
- 單例模式
- 異常
- 私有化
- 獲取對象信息
- *args和**kwargs
- property屬性
- 元類
- slots
- 定制類
- 枚舉
- 模塊
- 模塊介紹
- 模塊中的__name__
- 模塊中的__all__
- 包
- 模塊發布
- 模塊的安裝和使用
- 多模塊開發
- 標準庫
- 給程序傳參數
- 時間
- 正則表達式
- GIL
- 深拷貝和淺拷貝
- 單元測試
- pyqt
- 安裝
- 設置窗口圖標和移動窗口
- 設置氣泡提示和文本
- 圖片展示
- 文本框控件
- 按鈕控件
- 信號和槽
- 布局
- 對話框控件
- pygame
- 窗體關閉事件
- 顯示圖片
- 移動圖片
- 文本顯示
- 背景音和音效
- FPS計算
- surface
- 鼠標事件
- 函數式編程
- map/reduce
- filter
- sorted
- 返回函數
- 裝飾器
- 偏函數
- 網絡編程
- tcp
- udp
- socket
- epoll
- WSGI
- 多任務
- 多線程
- 多進程
- 分布式進程
- 協程
- 迭代器
- 生成器
- yield多任務
- greenlet
- gevent
- ThreadLocal
- asyncio
- async/await
- aiohttp
- 常用內建模塊
- datetime
- collections
- base64
- struct
- hashlib
- hmac
- itertools
- urllib
- xml
- HTMLParser
- 常用第三方模塊
- pillow
- requests
- chardet
- psutil
- 圖形界面
- 海龜繪圖
- Django
- 虛擬環境搭建
- ORM
- 模型類設計和表生成
- 模型類操作
- 關系查詢
- 后臺管理
- 配置mysql
- 字段屬性和選項
- 查詢
- 模型關聯
- 路由
- 模板
- selenium
- 基本原理
- api
- 八種定位方式
- 元素的操作
- 多標簽
- 多表單
- 鼠標,鍵盤
- 警告框
- 下拉框
- 執行js
- 等待
- cookie
- 封裝
- unittest模塊
- 斷言
- 測試用例
- jmeter
- jmeter簡介
- jmeter提取json
- 添加header和cookie
- 讀取csv/txt文件
- 配置文件
- ant