[TOC]
collections是Python內建的一個集合模塊,提供了許多有用的集合類
# namedtuple
我們知道tuple可以表示不變集合,例如,一個點的二維坐標就可以表示成:
~~~
>>> p = (1, 2)
~~~
但是,看到(1, 2),很難看出這個tuple是用來表示一個坐標的。
定義一個class又小題大做了,這時,namedtuple就派上了用場:
~~~
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
~~~
namedtuple是一個函數,它用來創建一個自定義的tuple對象,并且規定了tuple元素的個數,并可以用屬性而不是索引來引用tuple的某個元素。
這樣一來,我們用namedtuple可以很方便地定義一種數據類型,它具備tuple的不變性,又可以根據屬性來引用,使用十分方便。
可以驗證創建的Point對象是tuple的一種子類:
~~~
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
~~~
類似的,如果要用坐標和半徑表示一個圓,也可以用namedtuple定義:
~~~
# namedtuple('名稱', [屬性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
~~~
# deque
使用list存儲數據時,按索引訪問元素很快,但是插入和刪除元素就很慢了,因為list是線性存儲,數據量大的時候,插入和刪除效率很低。
deque是為了高效實現插入和刪除操作的雙向列表,適合用于隊列和棧:
~~~
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
~~~
deque除了實現list的append()和pop()外,還支持appendleft()和popleft(),這樣就可以非常高效地往頭部添加或刪除元素
# defaultdict
使用dict時,如果引用的Key不存在,就會拋出KeyError。如果希望key不存在時,返回一個默認值,就可以用defaultdict:
~~~
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默認值
'N/A'
~~~
注意默認值是調用函數返回的,而函數在創建defaultdict對象時傳入。
除了在Key不存在時返回默認值,defaultdict的其他行為跟dict是完全一樣的
# OrderedDict
使用dict時,Key是無序的。在對dict做迭代時,我們無法確定Key的順序。
如果要保持Key的順序,可以用OrderedDict:
~~~
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是無序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
~~~
注意,OrderedDict的Key會按照插入的順序排列,不是Key本身排序:
~~~
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的順序返回
['z', 'y', 'x']
~~~
OrderedDict可以實現一個FIFO(先進先出)的dict,當容量超出限制時,先刪除最早添加的Key:
~~~
from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity
def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print('remove:', last)
if containsKey:
del self[key]
print('set:', (key, value))
else:
print('add:', (key, value))
OrderedDict.__setitem__(self, key, value)
~~~
# ChainMap
ChainMap可以把一組dict串起來并組成一個邏輯上的dict。ChainMap本身也是一個dict,但是查找的時候,會按照順序在內部的dict依次查找。
什么時候使用ChainMap最合適?舉個例子:應用程序往往都需要傳入參數,參數可以通過命令行傳入,可以通過環境變量傳入,還可以有默認參數。我們可以用ChainMap實現參數的優先級查找,即先查命令行參數,如果沒有傳入,再查環境變量,如果沒有,就使用默認參數。
下面的代碼演示了如何查找user和color這兩個參數:
~~~
from collections import ChainMap
import os, argparse
# 構造缺省參數:
defaults = {
'color': 'red',
'user': 'guest'
}
# 構造命令行參數:
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }
# 組合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)
# 打印參數:
print('color=%s' % combined['color'])
print('user=%s' % combined['user'])
~~~
沒有任何參數時,打印出默認參數:
~~~
$ python3 use_chainmap.py
color=red
user=guest
~~~
當傳入命令行參數時,優先使用命令行參數:
~~~
$ python3 use_chainmap.py -u bob
color=red
user=bob
~~~
同時傳入命令行參數和環境變量,命令行參數的優先級較高:
~~~
$ user=admin color=green python3 use_chainmap.py -u bob
color=green
user=bob
~~~
# Counter
Counter是一個簡單的計數器,例如,統計字符出現的個數:
~~~
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
~~~
Counter實際上也是dict的一個子類,上面的結果可以看出,字符'g'、'm'、'r'各出現了兩次,其他字符各出現了一次
- python入門
- 軟件安裝
- anaconda使用
- py解釋器
- 數據類型和變量
- 編碼
- 字符串
- 格式化
- 數據類型
- 運算符
- list和tuple
- 列表生成式
- dict和set
- 切片和迭代
- set,list,tuple之間互換
- is和==
- 公共方法
- 反射操作
- 數學運算
- 類型轉換
- 對象操作
- 序列操作
- 運算符
- 內置函數
- 交互操作
- 編譯執行
- 引用
- 判斷,循環
- 生成器
- 迭代器
- 函數
- 數據類型轉換
- 空函數
- 參數
- 全局變量
- 返回值
- 遞歸
- 匿名函數
- 文件操作
- 打開和關閉
- 讀寫
- 備份文件
- 文件定位讀寫
- 重命名,刪除
- 文件夾相關操作
- with
- StringIO和BytesIO
- 操作文件和目錄
- 序列化
- 文件屬性
- 面向對象
- 類和對象
- init()方法
- 魔法方法
- 繼承
- 重寫
- 多態
- 類屬性,實例屬性
- 靜態方法和類方法
- 工廠模式
- 單例模式
- 異常
- 私有化
- 獲取對象信息
- *args和**kwargs
- property屬性
- 元類
- slots
- 定制類
- 枚舉
- 模塊
- 模塊介紹
- 模塊中的__name__
- 模塊中的__all__
- 包
- 模塊發布
- 模塊的安裝和使用
- 多模塊開發
- 標準庫
- 給程序傳參數
- 時間
- 正則表達式
- GIL
- 深拷貝和淺拷貝
- 單元測試
- pyqt
- 安裝
- 設置窗口圖標和移動窗口
- 設置氣泡提示和文本
- 圖片展示
- 文本框控件
- 按鈕控件
- 信號和槽
- 布局
- 對話框控件
- pygame
- 窗體關閉事件
- 顯示圖片
- 移動圖片
- 文本顯示
- 背景音和音效
- FPS計算
- surface
- 鼠標事件
- 函數式編程
- map/reduce
- filter
- sorted
- 返回函數
- 裝飾器
- 偏函數
- 網絡編程
- tcp
- udp
- socket
- epoll
- WSGI
- 多任務
- 多線程
- 多進程
- 分布式進程
- 協程
- 迭代器
- 生成器
- yield多任務
- greenlet
- gevent
- ThreadLocal
- asyncio
- async/await
- aiohttp
- 常用內建模塊
- datetime
- collections
- base64
- struct
- hashlib
- hmac
- itertools
- urllib
- xml
- HTMLParser
- 常用第三方模塊
- pillow
- requests
- chardet
- psutil
- 圖形界面
- 海龜繪圖
- Django
- 虛擬環境搭建
- ORM
- 模型類設計和表生成
- 模型類操作
- 關系查詢
- 后臺管理
- 配置mysql
- 字段屬性和選項
- 查詢
- 模型關聯
- 路由
- 模板
- selenium
- 基本原理
- api
- 八種定位方式
- 元素的操作
- 多標簽
- 多表單
- 鼠標,鍵盤
- 警告框
- 下拉框
- 執行js
- 等待
- cookie
- 封裝
- unittest模塊
- 斷言
- 測試用例
- jmeter
- jmeter簡介
- jmeter提取json
- 添加header和cookie
- 讀取csv/txt文件
- 配置文件
- ant