<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                1、關閉HTTP的響應 當你使用標準http庫發起請求時,你得到一個http的響應變量。如果你不讀取響應主體,你依舊需要關閉它。注意對于空的響應你也一定要這么做。對于新的Go開發者而言,這個很容易就會忘掉。 一些新的Go開發者確實嘗試關閉響應主體,但他們在錯誤的地方做。 ~~~ package main import ( "fmt" "io/ioutil" "net/http" ) func main() { resp, err := http.Get("http://www.oldboygo.cn/") // resp, err := http.Get("http://www.baidu.cn/") defer resp.Body.Close() //not ok if err != nil { fmt.Println(err) return } body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) } ~~~ 這段代碼對于成功的請求沒問題,但如果http的請求失敗,resp變量可能會是nil,這將導致一個runtime panic。 ~~~ panic: runtime error: invalid memory address or nil pointer dereference [signal SIGSEGV: segmentation violation code=0x1 addr=0x40 pc=0x11eb322] ~~~ 最常見的關閉響應主體的方法是在http響應的錯誤檢查后調用defer。 ~~~ package main import ( "fmt" "io/ioutil" "net/http" ) func main() { // resp, err := http.Get("https://api.ipify.org?format=json") resp, err := http.Get("https://www.oldboygo.com") if err != nil { fmt.Println(err) return } defer resp.Body.Close() //ok, most of the time :-) body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) } ~~~ 運行結果: ~~~ Get https://www.oldboygo.com: dial tcp: lookup www.oldboygo.com: no such host ~~~ 大多數情況下,當你的http響應失敗時,resp變量將為nil,而err變量將是non-nil。然而,當你得到一個重定向的錯誤時,兩個變量都將是non-nil。這意味著你最后依然會內存泄露。 通過在http響應錯誤處理中添加一個關閉non-nil響應主體的的調用來修復這個問題。另一個方法是使用一個defer調用來關閉所有失敗和成功的請求的響應主體。 ~~~ package main import ( "fmt" "io/ioutil" "net/http" ) func main() { resp, err := http.Get("https://api.ipify.org?format=json") if resp != nil { defer resp.Body.Close() } if err != nil { fmt.Println(err) return } body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) } ~~~ resp.Body.Close()的原始實現也會讀取并丟棄剩余的響應主體數據。這確保了http的鏈接在keepalive http連接行為開啟的情況下,可以被另一個請求復用。最新的http客戶端的行為是不同的。現在讀取并丟棄剩余的響應數據是你的職責。如果你不這么做,http的連接可能會關閉,而無法被重用。 如果http連接的重用對你的應用很重要,你可能需要在響應處理邏輯的后面添加像下面的代碼: _, err = io.Copy(ioutil.Discard, resp.Body) 如果你不立即讀取整個響應將是必要的,這可能在你處理json API響應時會發生: json.NewDecoder(resp.Body).Decode(&data) 2、關閉HTTP的連接 一些HTTP服務器保持會保持一段時間的網絡連接(根據HTTP 1.1的說明和服務器端的“keep-alive”配置)。默認情況下,標準http庫只在目標HTTP服務器要求關閉時才會關閉網絡連接。這意味著你的應用在某些條件下消耗完sockets/file的描述符。 你可以通過設置請求變量中的Close域的值為true,來讓http庫在請求完成時關閉連接。 另一個選項是添加一個Connection的請求頭,并設置為close。目標HTTP服務器應該也會響應一個Connection: close的頭。當http庫看到這個響應頭時,它也將會關閉連接。 ~~~ package main import ( "fmt" "io/ioutil" "net/http" ) func main() { req, err := http.NewRequest("GET", "http://golang.org", nil) if err != nil { fmt.Println(err) return } req.Close = true //or do this: //req.Header.Add("Connection", "close") resp, err := http.DefaultClient.Do(req) if resp != nil { defer resp.Body.Close() } if err != nil { fmt.Println(err) return } body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(len(string(body))) } ~~~ 你也可以取消http的全局連接復用。你將需要為此創建一個自定義的http傳輸配置。 ~~~ package main import ( "fmt" "io/ioutil" "net/http" ) func main() { tr := &http.Transport{DisableKeepAlives: true} client := &http.Client{Transport: tr} resp, err := client.Get("http://golang.org") if resp != nil { defer resp.Body.Close() } if err != nil { fmt.Println(err) return } fmt.Println(resp.StatusCode) body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(len(string(body))) } ~~~ 如果你向同一個HTTP服務器發送大量的請求,那么把保持網絡連接的打開是沒問題的。然而,如果你的應用在短時間內向大量不同的HTTP服務器發送一兩個請求,那么在引用收到響應后立刻關閉網絡連接是一個好主意。增加打開文件的限制數可能也是個好主意。當然,正確的選擇源自于應用。 3、比較Structs, Arrays, Slices, and Maps 如果結構體中的各個元素都可以用你可以使用等號來比較的話,那就可以使用相號, == 來比較結構體變量。 ~~~ package main import "fmt" type data struct { num int fp float32 complex complex64 str string char rune yes bool events <-chan string handler interface{} ref *byte raw [10]byte } func main() { v1 := data{} v2 := data{} fmt.Println("v1 == v2:", v1 == v2) //prints: v1 == v2: true } ~~~ 運行結果: ~~~ v1 == v2: true ~~~ 如果結構體中的元素無法比較,那使用等號將導致編譯錯誤。注意數組僅在它們的數據元素可比較的情況下才可以比較。 ~~~ package main import "fmt" type data struct { num int //ok checks [10]func() bool //not comparable doit func() bool //not comparable m map[string]string //not comparable bytes []byte //not comparable } func main() { v1 := data{} v2 := data{} fmt.Println("v1 == v2:", v1 == v2) } ~~~ 編譯錯誤: ~~~ ./main.go:16:30: invalid operation: v1 == v2 (struct containing [10]func() bool cannot be compared) ~~~ Go確實提供了一些助手函數,用于比較那些無法使用等號比較的變量。 最常用的方法是使用reflect包中的 DeepEqual()函數。 ~~~ package main import ( "fmt" "reflect" ) type data struct { num int //ok checks [10]func() bool //not comparable doit func() bool //not comparable m map[string]string //not comparable bytes []byte //not comparable } func main() { v1 := data{} v2 := data{} fmt.Println("v1 == v2:", reflect.DeepEqual(v1, v2)) //prints: v1 == v2: true m1 := map[string]string{"one": "a", "two": "b"} m2 := map[string]string{"two": "b", "one": "a"} fmt.Println("m1 == m2:", reflect.DeepEqual(m1, m2)) //prints: m1 == m2: true s1 := []int{1, 2, 3} s2 := []int{1, 2, 3} fmt.Println("s1 == s2:", reflect.DeepEqual(s1, s2)) //prints: s1 == s2: true } ~~~ 運行結果: ~~~ v1 == v2: true m1 == m2: true s1 == s2: true ~~~ 除了很慢(這個可能會也可能不會影響你的應用),DeepEqual()也有其他自身的技巧。 ~~~ package main import ( "fmt" "reflect" ) func main() { var b1 []byte = nil b2 := []byte{} fmt.Println("b1 == b2:", reflect.DeepEqual(b1, b2)) //prints: b1 == b2: false } ~~~ 運行結果: ~~~ b1 == b2: false ~~~ DeepEqual()不會認為空的slice與“nil”的slice相等。這個行為與你使用bytes.Equal()函數的行為不同。bytes.Equal()認為“nil”和空的slice是相等的。 ~~~ package main import ( "bytes" "fmt" ) func main() { var b1 []byte = nil b2 := []byte{} fmt.Println("b1 == b2:", bytes.Equal(b1, b2)) //prints: b1 == b2: true } ~~~ 運行結果: ~~~ b1 == b2: true ~~~ DeepEqual()在比較slice時并不總是完美的。 ~~~ package main import ( "encoding/json" "fmt" "reflect" ) func main() { var str string = "one" var in interface{} = "one" fmt.Println("str == in:", str == in, reflect.DeepEqual(str, in)) //prints: str == in: true true v1 := []string{"one", "two"} v2 := []interface{}{"one", "two"} fmt.Println("v1 == v2:", reflect.DeepEqual(v1, v2)) //prints: v1 == v2: false (not ok) data := map[string]interface{}{ "code": 200, "value": []string{"one", "two"}, } encoded, _ := json.Marshal(data) var decoded map[string]interface{} json.Unmarshal(encoded, &decoded) fmt.Println("data == decoded:", reflect.DeepEqual(data, decoded)) //prints: data == decoded: false (not ok) } ~~~ 運行結果: ~~~ str == in: true true v1 == v2: false data == decoded: false ~~~ 如果你的byte slice(或者字符串)中包含文字數據,而當你要不區分大小寫形式的值時(在使用==,bytes.Equal(),或者bytes.Compare()),你可能會嘗試使用“bytes”和“string”包中的ToUpper()或者ToLower()函數。對于英語文本,這么做是沒問題的,但對于許多其他的語言來說就不行了。這時應該使用strings.EqualFold()和bytes.EqualFold()。 如果你的byte slice中包含需要驗證用戶數據的隱私信息(比如,加密哈希、tokens等),不要使用reflect.DeepEqual()、bytes.Equal(),或者bytes.Compare(),因為這些函數將會讓你的應用易于被定時攻擊。為了避免泄露時間信息,使用'crypto/subtle'包中的函數(即,subtle.ConstantTimeCompare())。 4、從Panic中恢復 recover()函數可以用于獲取/攔截panic。僅當在一個defer函數中被完成時,調用recover()將會完成這個小技巧。 錯誤代碼: ~~~ package main import "fmt" func main() { recover() // doesn't do anything panic("not good") recover() // won't be executed fmt.Println("ok") } ~~~ 運行結果: ~~~ panic: not good ~~~ 正確代碼: ~~~ package main import "fmt" func main() { defer func() { fmt.Println("recovered:", recover()) }() panic("not good") } ~~~ 運行結果: ~~~ recovered: not good ~~~ recover()的調用僅當它在defer函數中被直接調用時才有效。 錯誤代碼: ~~~ package main import "fmt" func doRecover() { fmt.Println("recovered =>", recover()) //prints: recovered => <nil> } func main() { defer func() { doRecover() //panic is not recovered }() panic("not good") } ~~~ 運行結果: ~~~ recovered => <nil> panic: not good ~~~ 5、在Slice, Array, and Map "range"語句中更新引用元素的值 在“range”語句中生成的數據的值是真實集合元素的拷貝。它們不是原有元素的引用。 這意味著更新這些值將不會修改原來的數據。同時也意味著使用這些值的地址將不會得到原有數據的指針。 ~~~ package main import "fmt" func main() { data := []int{1, 2, 3} for _, v := range data { v *= 10 //original item is not changed } fmt.Println("data:", data) //prints data: [1 2 3] } ~~~ 運行結果: ~~~ data: [1 2 3] ~~~ 如果你需要更新原有集合中的數據,使用索引操作符來獲得數據。 ~~~ package main import "fmt" func main() { data := []int{1, 2, 3} for i, _ := range data { data[i] *= 10 } fmt.Println("data:", data) //prints data: [10 20 30] } ~~~ 運行結果: ~~~ data: [10 20 30] ~~~ 如果你的集合保存的是指針,那規則會稍有不同。 如果要更新原有記錄指向的數據,你依然需要使用索引操作,但你可以使用for range語句中的第二個值來更新存儲在目標位置的數據。 ~~~ &{10} &{20} &{30} ~~~ 6、在Slice中"隱藏"數據 當你重新劃分一個slice時,新的slice將引用原有slice的數組。如果你忘了這個行為的話,在你的應用分配大量臨時的slice用于創建新的slice來引用原有數據的一小部分時,會導致難以預期的內存使用。 ~~~ package main import "fmt" func get() []byte { raw := make([]byte, 10000) fmt.Println(len(raw), cap(raw), &raw[0]) //prints: 10000 10000 <byte_addr_x> return raw[:3] } func main() { data := get() fmt.Println(len(data), cap(data), &data[0]) //prints: 3 10000 <byte_addr_x> } ~~~ 運行結果: ~~~ 10000 10000 0xc420080000 3 10000 0xc420080000 ~~~ 為了避免這個陷阱,你需要從臨時的slice中拷貝數據(而不是重新劃分slice)。 ~~~ package main import "fmt" func get() []byte { raw := make([]byte, 10000) fmt.Println(len(raw), cap(raw), &raw[0]) //prints: 10000 10000 <byte_addr_x> res := make([]byte, 3) copy(res, raw[:3]) return res } func main() { data := get() fmt.Println(len(data), cap(data), &data[0]) //prints: 3 3 <byte_addr_y> } ~~~ 7、Slice的數據“毀壞” 比如說你需要重新一個路徑(在slice中保存)。你通過修改第一個文件夾的名字,然后把名字合并來創建新的路勁,來重新劃分指向各個文件夾的路徑。 ~~~ package main import ( "bytes" "fmt" ) func main() { path := []byte("AAAA/BBBBBBBBB") sepIndex := bytes.IndexByte(path, '/') dir1 := path[:sepIndex] dir2 := path[sepIndex+1:] fmt.Println("dir1 =>", string(dir1)) //prints: dir1 => AAAA fmt.Println("dir2 =>", string(dir2)) //prints: dir2 => BBBBBBBBB dir1 = append(dir1, "suffix"...) path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'}) fmt.Println("dir1 =>", string(dir1)) //prints: dir1 => AAAAsuffix fmt.Println("dir2 =>", string(dir2)) //prints: dir2 => uffixBBBB fmt.Println("new path =>", string(path)) } ~~~ 運行結果: ~~~ dir1 => AAAA dir2 => BBBBBBBBB dir1 => AAAAsuffix dir2 => uffixBBBB new path => AAAAsuffix/uffixBBBB ~~~ 結果與你想的不一樣。與"AAAAsuffix/BBBBBBBBB"相反,你將會得到"AAAAsuffix/uffixBBBB"。這個情況的發生是因為兩個文件夾的slice都潛在的引用了同一個原始的路徑slice。這意味著原始路徑也被修改了。根據你的應用,這也許會是個問題。 通過分配新的slice并拷貝需要的數據,你可以修復這個問題。另一個選擇是使用完整的slice表達式。 ~~~ package main import ( "bytes" "fmt" ) func main() { path := []byte("AAAA/BBBBBBBBB") sepIndex := bytes.IndexByte(path, '/') dir1 := path[:sepIndex:sepIndex] //full slice expression dir2 := path[sepIndex+1:] fmt.Println("dir1 =>", string(dir1)) //prints: dir1 => AAAA fmt.Println("dir2 =>", string(dir2)) //prints: dir2 => BBBBBBBBB dir1 = append(dir1, "suffix"...) path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'}) fmt.Println("dir1 =>", string(dir1)) //prints: dir1 => AAAAsuffix fmt.Println("dir2 =>", string(dir2)) //prints: dir2 => BBBBBBBBB fmt.Println("new path =>", string(path)) } ~~~ 運行結果: ~~~ dir1 => AAAA dir2 => BBBBBBBBB dir1 => AAAAsuffix dir2 => BBBBBBBBB new path => AAAAsuffix/BBBBBBBBB ~~~ 完整的slice表達式中的額外參數可以控制新的slice的容量。現在在那個slice后添加元素將會觸發一個新的buffer分配,而不是覆蓋第二個slice中的數據。 8、陳舊的(Stale)Slices 多個slice可以引用同一個數據。比如,當你從一個已有的slice創建一個新的slice時,這就會發生。如果你的應用功能需要這種行為,那么你將需要關注下“走味的”slice。 在某些情況下,在一個slice中添加新的數據,在原有數組無法保持更多新的數據時,將導致分配一個新的數組。而現在其他的slice還指向老的數組(和老的數據)。 ~~~ package main import "fmt" func main() { s1 := []int{1, 2, 3} fmt.Println(len(s1), cap(s1), s1) //prints 3 3 [1 2 3] s2 := s1[1:] fmt.Println(len(s2), cap(s2), s2) //prints 2 2 [2 3] for i := range s2 { s2[i] += 20 } //still referencing the same array fmt.Println(s1) //prints [1 22 23] fmt.Println(s2) //prints [22 23] s2 = append(s2, 4) for i := range s2 { s2[i] += 10 } //s1 is now "stale" fmt.Println(s1) //prints [1 22 23] fmt.Println(s2) //prints [32 33 14] } ~~~ 運行結果: ~~~ 3 3 [1 2 3] 2 2 [2 3] [1 22 23] [22 23] [1 22 23] [32 33 14] ~~~ 9、類型聲明和方法 當你通過把一個現有(非interface)的類型定義為一個新的類型時,新的類型不會繼承現有類型的方法。 錯誤代碼: ~~~ package main import "sync" type myMutex sync.Mutex func main() { var mtx myMutex mtx.Lock() mtx.Unlock() } ~~~ 編譯錯誤: ~~~ ./main.go:9:5: mtx.Lock undefined (type myMutex has no field or method Lock) ./main.go:10:5: mtx.Unlock undefined (type myMutex has no field or method Unlock) ~~~ 如果你確實需要原有類型的方法,你可以定義一個新的struct類型,用匿名方式把原有類型嵌入其中。 正確代碼: ~~~ package main import "sync" type myLocker struct { sync.Mutex } func main() { var lock myLocker lock.Lock() lock.Unlock() } ~~~ interface類型的聲明也會保留它們的方法集合。 ~~~ package main import "sync" type myLocker sync.Locker func main() { var lock myLocker = new(sync.Mutex) lock.Lock() lock.Unlock() } ~~~ 10、從"for switch"和"for select"代碼塊中跳出 沒有標簽的“break”聲明只能從內部的switch/select代碼塊中跳出來。如果無法使用“return”聲明的話,那就為外部循環定義一個標簽是另一個好的選擇。 ~~~ package main import "fmt" func main() { loop: for { switch { case true: fmt.Println("breaking out...") break loop } } fmt.Println("out!") } ~~~ 運行結果: ~~~ breaking out... out! ~~~ "goto"聲明也可以完成這個功能。。。 11、"for"聲明中的迭代變量和閉包 這在Go中是個很常見的技巧。for語句中的迭代變量在每次迭代時被重新使用。這就意味著你在for循環中創建的閉包(即函數字面量)將會引用同一個變量(而在那些goroutine開始執行時就會得到那個變量的值)。 ~~~ package main import ( "fmt" "time" ) func main() { data := []string{"one", "two", "three"} for _, v := range data { go func() { fmt.Println(v) }() } time.Sleep(3 * time.Second) //goroutines print: three, three, three } ~~~ 運行結果: ~~~ three three three ~~~ 最簡單的解決方法(不需要修改goroutine)是,在for循環代碼塊內把當前迭代的變量值保存到一個局部變量中。 ~~~ package main import ( "fmt" "time" ) func main() { data := []string{"one", "two", "three"} for _, v := range data { vcopy := v // go func() { fmt.Println(vcopy) }() } time.Sleep(3 * time.Second) //goroutines print: one, two, three } ~~~ 運行結果: ~~~ three one two ~~~ 另一個解決方法是把當前的迭代變量作為匿名goroutine的參數。 ~~~ package main import ( "fmt" "time" ) func main() { data := []string{"one", "two", "three"} for _, v := range data { go func(in string) { fmt.Println(in) }(v) } time.Sleep(3 * time.Second) //goroutines print: one, two, three } ~~~ 運行結果: ~~~ three one two ~~~ 下面這個陷阱稍微復雜一些的版本。 ~~~ package main import ( "fmt" "time" ) type field struct { name string } func (p *field) print() { fmt.Println(p.name) } func main() { data := []field{{"one"}, {"two"}, {"three"}} for _, v := range data { go v.print() } time.Sleep(3 * time.Second) //goroutines print: three, three, three } ~~~ 運行結果: ~~~ three three three ~~~ ~~~ package main import ( "fmt" "time" ) type field struct { name string } func (p *field) print() { fmt.Println(p.name) } func main() { data := []field{{"one"}, {"two"}, {"three"}} for _, v := range data { v := v go v.print() } time.Sleep(3 * time.Second) //goroutines print: one, two, three } ~~~ 運行結果: ~~~ three one two ~~~ 在運行這段代碼時你認為會看到什么結果?(原因是什么?) ~~~ package main import ( "fmt" "time" ) type field struct { name string } func (p *field) print() { fmt.Println(p.name) } func main() { data := []*field{{"one"}, {"two"}, {"three"}} for _, v := range data { go v.print() } time.Sleep(3 * time.Second) } ~~~ 運行結果: ~~~ three one two ~~~ 12、Defer函數調用參數的求值 被defer的函數的參數會在defer聲明時求值(而不是在函數實際執行時)。 Arguments for a deferred function call are evaluated when the defer statement is evaluated (not when the function is actually executing). ~~~ package main import "fmt" func main() { var i int = 1 defer fmt.Println("result =>", func() int { return i * 2 }()) i++ //prints: result => 2 (not ok if you expected 4) } ~~~ 運行結果: ~~~ result => 2 ~~~ 13、被Defer的函數調用執行 被defer的調用會在包含的函數的末尾執行,而不是包含代碼塊的末尾。對于Go新手而言,一個很常犯的錯誤就是無法區分被defer的代碼執行規則和變量作用規則。如果你有一個長時運行的函數,而函數內有一個for循環試圖在每次迭代時都defer資源清理調用,那就會出現問題。 ~~~ package main import ( "fmt" "os" "path/filepath" ) func main() { if len(os.Args) != 2 { os.Exit(-1) } start, err := os.Stat(os.Args[1]) if err != nil || !start.IsDir() { os.Exit(-1) } var targets []string filepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error { if err != nil { return err } if !fi.Mode().IsRegular() { return nil } targets = append(targets, fpath) return nil }) for _, target := range targets { f, err := os.Open(target) if err != nil { fmt.Println("bad target:", target, "error:", err) //prints error: too many open files break } defer f.Close() //will not be closed at the end of this code block //do something with the file... } } ~~~ 運行結果: ~~~ exit status 255 ~~~ 解決這個問題的一個方法是把代碼塊寫成一個函數。 ~~~ package main import ( "fmt" "os" "path/filepath" ) func main() { if len(os.Args) != 2 { os.Exit(-1) } start, err := os.Stat(os.Args[1]) if err != nil || !start.IsDir() { os.Exit(-1) } var targets []string filepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error { if err != nil { return err } if !fi.Mode().IsRegular() { return nil } targets = append(targets, fpath) return nil }) for _, target := range targets { func() { f, err := os.Open(target) if err != nil { fmt.Println("bad target:", target, "error:", err) return } defer f.Close() //ok //do something with the file... }() } } ~~~ 另一個方法是去掉defer語句 14、失敗的類型斷言 失敗的類型斷言返回斷言聲明中使用的目標類型的“零值”。這在與隱藏變量混合時,會發生未知情況。 ~~~ package main import "fmt" func main() { var data interface{} = "great" if data, ok := data.(int); ok { fmt.Println("[is an int] value =>", data) } else { fmt.Println("[not an int] value =>", data) //prints: [not an int] value => 0 (not "great") } } ~~~ 運行結果: ~~~ [not an int] value => 0 ~~~ ~~~ package main import "fmt" func main() { var data interface{} = "great" if res, ok := data.(int); ok { fmt.Println("[is an int] value =>", res) } else { fmt.Println("[not an int] value =>", data) //prints: [not an int] value => great (as expected) } } ~~~ 運行結果: ~~~ [not an int] value => great ~~~ 15、阻塞的Goroutine和資源泄露 Rob Pike在2012年的Google I/O大會上所做的“Go Concurrency Patterns”的演講上,說道過幾種基礎的并發模式。從一組目標中獲取第一個結果就是其中之一。 ~~~ func First(query string, replicas ...Search) Result { c := make(chan Result) searchReplica := func(i int) { c <- replicas[i](query) } for i := range replicas { go searchReplica(i) } return <-c } ~~~ 這個函數在每次搜索重復時都會起一個goroutine。每個goroutine把它的搜索結果發送到結果的channel中。結果channel的第一個值被返回。 那其他goroutine的結果會怎樣呢?還有那些goroutine自身呢? 在First()函數中的結果channel是沒緩存的。這意味著只有第一個goroutine返回。其他的goroutine會困在嘗試發送結果的過程中。這意味著,如果你有不止一個的重復時,每個調用將會泄露資源。 為了避免泄露,你需要確保所有的goroutine退出。一個不錯的方法是使用一個有足夠保存所有緩存結果的channel。 ~~~ func First(query string, replicas ...Search) Result { c := make(chan Result, len(replicas)) searchReplica := func(i int) { c <- replicas[i](query) } for i := range replicas { go searchReplica(i) } return <-c } ~~~ 另一個不錯的解決方法是使用一個有default情況的select語句和一個保存一個緩存結果的channel。default情況保證了即使當結果channel無法收到消息的情況下,goroutine也不會堵塞。 ~~~ func First(query string, replicas ...Search) Result { c := make(chan Result, 1) searchReplica := func(i int) { select { case c <- replicas[i](query): default: } } for i := range replicas { go searchReplica(i) } return <-c } ~~~ 你也可以使用特殊的取消channel來終止workers。 ~~~ func First(query string, replicas ...Search) Result { c := make(chan Result) done := make(chan struct{}) defer close(done) searchReplica := func(i int) { select { case c <- replicas[i](query): case <-done: } } for i := range replicas { go searchReplica(i) } return <-c } ~~~ 為何在演講中會包含這些bug?Rob Pike僅僅是不想把演示復雜化。這么作是合理的,但對于Go新手而言,可能會直接使用代碼,而不去思考它可能有問題。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看