# **優雅地結束goroutines**
本節內容將介紹如何使用Go標準庫中的`sync`包來解決上一節提到的`goroutine`中的任務還未執行完成,`main()`函數就提前結束的問題。
本節的代碼文件為syncGo.go,我們基于上一節的`create.go`來擴展`syncGo.go`。
`syncGo.go`的第一部分代碼如下:
```go
package main
import (
"flag"
"fmt"
"sync"
)
```
如上所示,我們不再需要time包,我們將使用sync包中的功能來等待所有的goroutine執行完成。
在第10章“并發 - 高級主題”中,我們將會學習兩種方式來對goroutine進行超時處理。
第二部分代碼如下:
```go
func main() {
n := flag.Int("n", 20, "Number of goroutines")
flag.Parse()
count := *n
fmt.Printf("Going to create %d goroutines.\n", count)
var waitGroup sync.WaitGroup
```
在上面的代碼中,我們定義了sync.WaitGroup類型的變量,查看sync包的源碼我們可以發現,waitgroup.go文件位于sync目錄中,sync.WaitGroup的定義只不過是一個包含三個字段的結構體:
```go
type WaitGroup struct {
noCopy noCopy
state1 [12]byte
sema uint32
}
```
`syncGo.go`的輸出將顯示有關`sync.WaitGroup`變量工作方式的更多信息。
第三部分代碼如下:
```go
fmt.Printf("%#v\n", waitGroup)
for i := 0; i < count; i++ {
waitGroup.Add(1)
go func(x int) {
defer waitGroup.Done()
fmt.Printf("%d ", x)
}(i)
}
```
在這里,你可以使用for循環創建所需數量的`goroutine`。(當然,也可以寫多個順序的Go語句。)
每次調用`sync.Add()`都會增加`sync.WaitGroup`變量中的計數器。需要注意的是,在go語句之前調用`sync.Add(1)`非常重要,以防止出現任何形式的競爭。當每個`goroutine`完成其工作時,將執行`sync.Done()`函數,以減少相同的計數器。
最后一部分代碼如下:
```go
fmt.Printf("%#v\n", waitGroup)
waitGroup.Wait()
fmt.Println("\nExiting...")
}
```
`sync.Wait()`調用將阻塞主程序,直到`sync.WaitGroup`變量中的計數器為零,從而保證所有`goroutine`能執行完成。
`syncGo.go`的輸出如下:
```bash
$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x14, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 7 8 9 10 11 12 13 14 15 16 17 0 1 2 5 18 4 6 3
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
1 0 4 5 17 7 8 9 10 11 12 13 2 sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x17, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
29 15 6 27 24 25 16 22 14 23 18 26 3 19 20 28 21
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x1e, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
29 1 7 8 2 9 10 11 12 4 13 15 0 6 5 22 25 23 16 28 26 20 19 24 21 14 3 17 18 27
Exiting...
```
`syncGo.go`的輸出因執行情況而異。另外,當`goroutines`的數量為30時,一些`goroutine`可能會在第二個`fmt.Printf(“%#v \ n”,waitGroup)`語句之前完成它們的工作。最后需要注意`sync.WaitGroup`中的`state1`字段是一個保存計數器的元素,該計數器根據`sync.Add()`和`sync.Done()`調用而增加和減少。
- 介紹
- 1 Go與操作系統
- 01.1 Go的歷史
- 01.2 Go的未來
- 01.3 Go的優點
- 01.3.1 Go是完美的么
- 01.3.2 什么是預處理器
- 01.3.3 godoc
- 01.4 編譯Go代碼
- 2 理解 Go 的內部構造
- Go 編譯器
- Go 的垃圾回收
- 三色算法
- 有關 Go 垃圾收集器操作的更多信息
- Maps, silces 與 Go 垃圾回收器
- Unsafe code
- 有關 unsafe 包
- 另一個 usafe 包的例子
- 從 Go 調用 C 代碼
- 在同一文件用 Go 調用 C 代碼
- 在單獨的文件用 Go 調用 C 代碼
- 從 C 調用 Go 代碼
- Go 包
- C 代碼
- defer 關鍵字
- 用 defer 打印日志
- Panic 和 Recover
- 單獨使用 Panic 函數
- 兩個好用的 UNIX 工具
- strace
- dtrace
- 配置 Go 開發環境
- go env 命令
- Go 匯編器
- 節點樹
- 進一步了解 Go 構建
- 創建 WebAssembly 代碼
- 對 Webassembly 的簡單介紹
- 為什么 WebAssembly 很重要
- Go 與 WebAssembly
- 示例
- 使用創建好的 WebAssembly 代碼
- Go 編碼風格建議
- 練習和相關鏈接
- 本章小結
- 3 Go基本數據類型
- 03.1 Go循環
- 03.1.1 for循環
- 03.1.2 while循環
- 03.1.3 range關鍵字
- 03.1.4 for循環代碼示例
- 03.3 Go切片
- 03.3.1 切片基本操作
- 03.3.2 切片的擴容
- 03.3.3 字節切片
- 03.3.4 copy()函數
- 03.3.5 多維切片
- 03.3.6 使用切片的代碼示例
- 03.3.7 使用sort.Slice()排序
- 03.4 Go 映射(map)
- 03.4.1 Map值為nil的坑
- 03.4.2 何時該使用Map?
- 03.5 Go 常量
- 03.5.1 常量生成器:iota
- 03.6 Go 指針
- 03.7 時間與日期的處理技巧
- 03.7.1 解析時間
- 03.7.2 解析時間的代碼示例
- 03.7.3 解析日期
- 03.7.4 解析日期的代碼示例
- 03.7.5 格式化時間與日期
- 03.8 延伸閱讀
- 03.9 練習
- 03.10 本章小結
- 9 并發-Goroutines,Channel和Pipeline
- 09.1 關于進程,線程和Go協程
- 09.1.1 Go調度器
- 09.1.2 并發與并行
- 09.2 Goroutines
- 09.2.1 創建一個Goroutine
- 09.2.2 創建多個Goroutine
- 09.3 優雅地結束goroutines
- 09.3.1 當Add()和Done()的數量不匹配時會發生什么?
- 09.4 Channel(通道)
- 09.4.1 通道的寫入
- 09.4.2 從通道接收數據
- 09.4.3 通道作為函數參數傳遞
- 09.5 管道
- 09.6 延展閱讀
- 09.7 練習
- 09.8 本章小結