<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                [TOC] ***** pandas對dataframe與series提供了豐富的操作方法 ### 1.3.1. 查看屬性 1. columns 2. index 3. dtypes 4. shape 5. size ``` #查看數據框的列 df.columns #查看數據框的索引 df.index #數據框每一列的數據類型 df.dtypes #數據框有多少行多少列 df.shape #數據框有多少個數據,行*列 df.size #數據框的長度,它有多少行 len(df) ``` ### 1.3.2. 方法使用 1. head 2. tail 3. rename 4. replace 5. unique() 6. value_counts() 7. sort_values 8. describe 9. max/min/sum/mean ``` #重命名列名,"height"是原名字,"Height"是修改后的名字。inplace=True是對原數據集修改,inplace=false是根據原來生成一個新的數據集 df.rename(columns={"height":"Height","weight":"Weight"},inplace=True) ``` ``` #顯示前兩行 df.head(2) #顯示最后四行 df.tail(4) ``` ``` #將player列中Curly Armstrong的數據換位xiao并放回一個新的數據集 df.replace({"Player":{"Curly Armstrong":"xiao"}}) ``` ``` #對值進行排序,默認是升序ascending=True,先按collage再按Height排 df.sort_values(by = ['collage','Height'],ascending=True).head() ``` ``` #s1是數據框的birth_state列,是series s1 = df['birth_state'] #該列中不重復的值的數量有多少個 s1.unique()看唯一值 len(s1.unique()) #結果129個 ``` ``` #該列中每個值的頻數計算 s1.value_counts() ``` ![](https://img.kancloud.cn/7f/b4/7fb46262ff79a40a1a5d21aa12a8850a_476x219.png) ``` #每一列的最小值 df.min() ``` ![](https://img.kancloud.cn/4f/9f/4f9f298537e4fb52e18b129f9474e499_177x93.png) 每一列的最大值 ![](https://img.kancloud.cn/fe/9e/fe9e67bb46796b038ff524f5352bb3ff_198x136.png) ``` axis : {index (0), columns (1)} Axis for the function to be applied on. #axis=0 求每一列的數值和,axis =1 求每一行的數值和 max函數也有axis參數 # df.sum默認是 axis = 0 df.sum(axis=0) ``` **數據選取/添加/刪除** ``` #選擇Player列數據 df['Player'] #選擇兩列數據 df[['Player','Height']] # 不推薦使用這種方式取Player列數據,分不清是自帶屬性還是數據框的一個列名 df.Player ``` ``` # 給增加class列,該列的值都是1 df["class"] = 1 df['class'] df.class ``` ``` #顯示數據框Height列中>=200或<=170的所有值 df[(df['Height'] >= 200) | (df['Height'] <=170)] .head()默認顯示前五行 ``` ``` # 刪除df數據框中的class列 del df['class'] ``` ``` # somethong different import numpy as np a = np.array([[1,2,3,4,5,56],[3,4,5,1,7,3],[29,3,1,6,2,0]]) #np.sum(a,axis = 1) 求每一行數值和 #np.sum(a,axis = 0) 求每一列數值和 # 求所有數據的和,沒有axis=0的默認值 自己寫的時候要清楚是根據什么進行的求值 np.sum(a) ``` ![](https://img.kancloud.cn/e8/4d/e84d851ad82c7107b6472c8e21c57af2_142x89.png)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看