## 18.4.?ioctls 函數
在 struct tty_driver 中的 ioctl 函數被 tty 核心調用當 ioctl(2) 被在設備節點上調用. 如果這個 tty 驅動不知道如何處理傳遞給它的 ioctl 值, 它應當返回 -ENOIOCTLCMD 來試圖讓 tty 核心實現一個通用的調用版本.
2.6 內核定義了大約 70 個不同的 tty ioctls, 可被用來發送給一個 tty 驅動. 大部分的 tty 驅動不處理它們全部, 但是只有一個小的更普通的子集. 這是一個更通用的 tty ioctls 列表, 它們的含義, 以及如何實現它們:
TIOCSERGETLSR
獲得這個 tty 設備的線路狀態寄存器( LSR )的值.
TIOCGSERIAL
獲得串口線信息. 調用者可以潛在地從 tty 設備獲得許多串口線路信息, 在這個調用中一次全部. 一些程序( 例如 setserial 和 dip) 調用這個函數來確保波特率被正確設置, 以及來獲得通常的關于驅動控制的設備類型信息. 調用者傳遞一個指向一個大的 serial_struct 結構的指針, 這個結構應當由 tty 驅動填充正確的值. 這是一個如何實現這個的例子:
~~~
static int tiny_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
{
struct tiny_serial *tiny = tty->driver_data;
if (cmd == TIOCGSERIAL)
{
struct serial_struct tmp;
if (!arg)
return -EFAULT;
memset(&tmp, 0, sizeof(tmp));
tmp.type = tiny->serial.type;
tmp.line = tiny->serial.line;
tmp.port = tiny->serial.port;
tmp.irq = tiny->serial.irq;
tmp.flags = ASYNC_SKIP_TEST | ASYNC_AUTO_IRQ;
tmp.xmit_fifo_size = tiny->serial.xmit_fifo_size;
tmp.baud_base = tiny->serial.baud_base;
tmp.close_delay = 5*HZ;
tmp.closing_wait = 30*HZ;
tmp.custom_divisor = tiny->serial.custom_divisor;
tmp.hub6 = tiny->serial.hub6;
tmp.io_type = tiny->serial.io_type;
if (copy_to_user((void __user *)arg, &tmp, sizeof(tmp)))
return -EFAULT;
return 0;
}
return -ENOIOCTLCMD;
}
~~~
TIOCSSERIAL
設置串口線路信息. 這是 IOCGSERIAL 的反面, 并且允許用戶一次全部設置 tty 設備的串口線狀態. 一個指向 struct serial_struct 的指針被傳遞給這個調用, 填滿這個 tty 設備應當被設置的數據. 如果這個 tty 驅動沒有實現這個調用, 大部分程序仍然正確工作.
TIOCMIWAIT
等待 MSR 改變. 用戶在非尋常的情況下請求這個 ioctl, 它想在內核中睡眠直到這個 tty 設備的 MSR 寄存器發生某些事情. arg 參數包含用戶在等待的事件類型. 這通常用來等待直到一個狀態線變化, 指示有更多的數據發送給設備.
當實現這個 ioctl 時要小心, 并且不要使用 interruptible_sleep_on 調用, 因為它是不安全的(有很多不好的競爭條件涉及它). 相反, 一個 wait_queue 應當用來避免這個問題. 這是一個如何實現這個 ioctl 的例子:
~~~
static int tiny_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
{
struct tiny_serial *tiny = tty->driver_data;
if (cmd == TIOCMIWAIT)
{
DECLARE_WAITQUEUE(wait, current);
struct async_icount cnow;
struct async_icount cprev;
cprev = tiny->icount;
while (1) {
add_wait_queue(&tiny->wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule();
remove_wait_queue(&tiny->wait, &wait); /* see if a signal woke us up */
if (signal_pending(current))
return -ERESTARTSYS;
cnow = tiny->icount;
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts)
return -EIO; /* no change => error */
if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) {
return 0;
}
cprev = cnow;
}
}
return -ENOIOCTLCMD;
}
~~~
在 tty 驅動的代碼中能知道 MSR 寄存器改變的某些地方, 下面的代碼行必須調用以便這個代碼能正常工作:
~~~
wake_up_interruptible(&tp->wait);
~~~
TIOCGICOUNT
獲得中斷計數. 當用戶要知道已經產生多少串口線中斷時調用. 如果驅動有一個中斷處理, 它應當定義一個內部計數器結構來跟蹤這些統計和遞增適當的計數器, 每次這個函數被內核運行時.
這個 ioctl 調用傳遞內核一個指向結構 serial_icounter_struct 的指針, 它應當被 tty 驅動填充. 這個調用常常和之前的 IOCMIWAIT ioctl 調用結合使用. 如果 tty 驅動跟蹤所有的這些中斷在驅動操作時, 實現這個調用的代碼會非常簡單:
~~~
static int tiny_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
{
struct tiny_serial *tiny = tty->driver_data;
if (cmd == TIOCGICOUNT)
{
struct async_icount cnow = tiny->icount;
struct serial_icounter_struct icount;
icount.cts = cnow.cts;
icount.dsr = cnow.dsr;
icount.rng = cnow.rng;
icount.dcd = cnow.dcd;
icount.rx = cnow.rx;
icount.tx = cnow.tx;
icount.frame = cnow.frame;
icount.overrun = cnow.overrun;
icount.parity = cnow.parity;
icount.brk = cnow.brk;
icount.buf_overrun = cnow.buf_overrun;
if (copy_to_user((void __user *)arg, &icount, sizeof(icount)))
return -EFAULT;
return 0;
}
return -ENOIOCTLCMD;
}
~~~
- Linux設備驅動第三版
- 第 1 章 設備驅動簡介
- 1.1. 驅動程序的角色
- 1.2. 劃分內核
- 1.3. 設備和模塊的分類
- 1.4. 安全問題
- 1.5. 版本編號
- 1.6. 版權條款
- 1.7. 加入內核開發社團
- 1.8. 本書的內容
- 第 2 章 建立和運行模塊
- 2.1. 設置你的測試系統
- 2.2. Hello World 模塊
- 2.3. 內核模塊相比于應用程序
- 2.4. 編譯和加載
- 2.5. 內核符號表
- 2.6. 預備知識
- 2.7. 初始化和關停
- 2.8. 模塊參數
- 2.9. 在用戶空間做
- 2.10. 快速參考
- 第 3 章 字符驅動
- 3.1. scull 的設計
- 3.2. 主次編號
- 3.3. 一些重要數據結構
- 3.4. 字符設備注冊
- 3.5. open 和 release
- 3.6. scull 的內存使用
- 3.7. 讀和寫
- 3.8. 使用新設備
- 3.9. 快速參考
- 第 4 章 調試技術
- 4.1. 內核中的調試支持
- 4.2. 用打印調試
- 4.3. 用查詢來調試
- 4.4. 使用觀察來調試
- 4.5. 調試系統故障
- 4.6. 調試器和相關工具
- 第 5 章 并發和競爭情況
- 5.1. scull 中的缺陷
- 5.2. 并發和它的管理
- 5.3. 旗標和互斥體
- 5.4. Completions 機制
- 5.5. 自旋鎖
- 5.6. 鎖陷阱
- 5.7. 加鎖的各種選擇
- 5.8. 快速參考
- 第 6 章 高級字符驅動操作
- 6.1. ioctl 接口
- 6.2. 阻塞 I/O
- 6.3. poll 和 select
- 6.4. 異步通知
- 6.5. 移位一個設備
- 6.6. 在一個設備文件上的存取控制
- 6.7. 快速參考
- 第 7 章 時間, 延時, 和延后工作
- 7.1. 測量時間流失
- 7.2. 獲知當前時間
- 7.3. 延后執行
- 7.4. 內核定時器
- 7.5. Tasklets 機制
- 7.6. 工作隊列
- 7.7. 快速參考
- 第 8 章 分配內存
- 8.1. kmalloc 的真實故事
- 8.2. 后備緩存
- 8.3. get_free_page 和其友
- 8.4. 每-CPU 的變量
- 8.5. 獲得大量緩沖
- 8.6. 快速參考
- 第 9 章 與硬件通訊
- 9.1. I/O 端口和 I/O 內存
- 9.2. 使用 I/O 端口
- 9.3. 一個 I/O 端口例子
- 9.4. 使用 I/O 內存
- 9.5. 快速參考
- 第 10 章 中斷處理
- 10.1. 準備并口
- 10.2. 安裝一個中斷處理
- 10.3. 前和后半部
- 10.4. 中斷共享
- 10.5. 中斷驅動 I/O
- 10.6. 快速參考
- 第 11 章 內核中的數據類型
- 11.1. 標準 C 類型的使用
- 11.2. 安排一個明確大小給數據項
- 11.3. 接口特定的類型
- 11.4. 其他移植性問題
- 11.5. 鏈表
- 11.6. 快速參考
- 第 12 章 PCI 驅動
- 12.1. PCI 接口
- 12.2. 回顧: ISA
- 12.3. PC/104 和 PC/104+
- 12.4. 其他的 PC 總線
- 12.5. SBus
- 12.6. NuBus 總線
- 12.7. 外部總線
- 12.8. 快速參考
- 第 13 章 USB 驅動
- 13.1. USB 設備基礎知識
- 13.2. USB 和 sysfs
- 13.3. USB 的 Urbs
- 13.4. 編寫一個 USB 驅動
- 13.5. 無 urb 的 USB 傳送
- 13.6. 快速參考
- 第 14 章 Linux 設備模型
- 14.1. Kobjects, Ksets 和 Subsystems
- 14.2. 低級 sysfs 操作
- 14.3. 熱插拔事件產生
- 14.4. 總線, 設備, 和驅動
- 14.5. 類
- 14.6. 集成起來
- 14.7. 熱插拔
- 14.8. 處理固件
- 14.9. 快速參考
- 第 15 章 內存映射和 DMA
- 15.1. Linux 中的內存管理
- 15.2. mmap 設備操作
- 15.3. 進行直接 I/O
- 15.4. 直接內存存取
- 15.5. 快速參考
- 第 16 章 塊驅動
- 16.1. 注冊
- 16.2. 塊設備操作
- 16.3. 請求處理
- 16.4. 一些其他的細節
- 16.5. 快速參考
- 第 17 章 網絡驅動
- 17.1. snull 是如何設計的
- 17.2. 連接到內核
- 17.3. net_device 結構的詳情
- 17.4. 打開與關閉
- 17.5. 報文傳送
- 17.6. 報文接收
- 17.7. 中斷處理
- 17.8. 接收中斷緩解
- 17.9. 連接狀態的改變
- 17.10. Socket 緩存
- 17.11. MAC 地址解析
- 17.12. 定制 ioctl 命令
- 17.13. 統計信息
- 17.14. 多播
- 17.15. 幾個其他細節
- 17.16. 快速參考
- 第 18 章 TTY 驅動
- 18.1. 一個小 TTY 驅動
- 18.2. tty_driver 函數指針
- 18.3. TTY 線路設置
- 18.4. ioctls 函數
- 18.5. TTY 設備的 proc 和 sysfs 處理
- 18.6. tty_driver 結構的細節
- 18.7. tty_operaions 結構的細節
- 18.8. tty_struct 結構的細節
- 18.9. 快速參考