## 問題
你想根據一組語法規則解析文本并執行命令,或者構造一個代表輸入的抽象語法樹。如果語法非常簡單,你可以自己寫這個解析器,而不是使用一些框架。
## 解決方案
在這個問題中,我們集中討論根據特殊語法去解析文本的問題。為了這樣做,你首先要以BNF或者EBNF形式指定一個標準語法。比如,一個簡單數學表達式語法可能像下面這樣:
expr ::= expr + term
| expr - term
| term
term ::= term * factor
| term / factor
| factor
factor ::= ( expr )
| NUM
或者,以EBNF形式:
expr ::= term { (+|-) term }*
term ::= factor { (*|/) factor }*
factor ::= ( expr )
| NUM
在EBNF中,被包含在 `{...}*` 中的規則是可選的。[*](#)代表0次或多次重復(跟正則表達式中意義是一樣的)。
現在,如果你對BNF的工作機制還不是很明白的話,就把它當做是一組左右符號可相互替換的規則。一般來講,解析的原理就是你利用BNF完成多個替換和擴展以匹配輸入文本和語法規則。為了演示,假設你正在解析形如 `3 + 4 * 5` 的表達式。這個表達式先要通過使用2.18節中介紹的技術分解為一組令牌流。結果可能是像下列這樣的令牌序列:
NUM + NUM * NUM
在此基礎上, 解析動作會試著去通過替換操作匹配語法到輸入令牌:
expr
expr ::= term { (+|-) term }*
expr ::= factor { (*|/) factor }* { (+|-) term }*
expr ::= NUM { (*|/) factor }* { (+|-) term }*
expr ::= NUM { (+|-) term }*
expr ::= NUM + term { (+|-) term }*
expr ::= NUM + factor { (*|/) factor }* { (+|-) term }*
expr ::= NUM + NUM { (*|/) factor}* { (+|-) term }*
expr ::= NUM + NUM * factor { (*|/) factor }* { (+|-) term }*
expr ::= NUM + NUM * NUM { (*|/) factor }* { (+|-) term }*
expr ::= NUM + NUM * NUM { (+|-) term }*
expr ::= NUM + NUM * NUM
下面所有的解析步驟可能需要花點時間弄明白,但是它們原理都是查找輸入并試著去匹配語法規則。第一個輸入令牌是NUM,因此替換首先會匹配那個部分。一旦匹配成功,就會進入下一個令牌+,以此類推。當已經確定不能匹配下一個令牌的時候,右邊的部分(比如 `{ (*/) factor }*` )就會被清理掉。在一個成功的解析中,整個右邊部分會完全展開來匹配輸入令牌流。
有了前面的知識背景,下面我們舉一個簡單示例來展示如何構建一個遞歸下降表達式求值程序:
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
Topic: 下降解析器
Desc :
"""
import re
import collections
# Token specification
NUM = r'(?P<NUM>\d+)'
PLUS = r'(?P<PLUS>\+)'
MINUS = r'(?P<MINUS>-)'
TIMES = r'(?P<TIMES>\*)'
DIVIDE = r'(?P<DIVIDE>/)'
LPAREN = r'(?P<LPAREN>\()'
RPAREN = r'(?P<RPAREN>\))'
WS = r'(?P<WS>\s+)'
master_pat = re.compile('|'.join([NUM, PLUS, MINUS, TIMES,
DIVIDE, LPAREN, RPAREN, WS]))
# Tokenizer
Token = collections.namedtuple('Token', ['type', 'value'])
def generate_tokens(text):
scanner = master_pat.scanner(text)
for m in iter(scanner.match, None):
tok = Token(m.lastgroup, m.group())
if tok.type != 'WS':
yield tok
# Parser
class ExpressionEvaluator:
'''
Implementation of a recursive descent parser. Each method
implements a single grammar rule. Use the ._accept() method
to test and accept the current lookahead token. Use the ._expect()
method to exactly match and discard the next token on on the input
(or raise a SyntaxError if it doesn't match).
'''
def parse(self, text):
self.tokens = generate_tokens(text)
self.tok = None # Last symbol consumed
self.nexttok = None # Next symbol tokenized
self._advance() # Load first lookahead token
return self.expr()
def _advance(self):
'Advance one token ahead'
self.tok, self.nexttok = self.nexttok, next(self.tokens, None)
def _accept(self, toktype):
'Test and consume the next token if it matches toktype'
if self.nexttok and self.nexttok.type == toktype:
self._advance()
return True
else:
return False
def _expect(self, toktype):
'Consume next token if it matches toktype or raise SyntaxError'
if not self._accept(toktype):
raise SyntaxError('Expected ' + toktype)
# Grammar rules follow
def expr(self):
"expression ::= term { ('+'|'-') term }*"
exprval = self.term()
while self._accept('PLUS') or self._accept('MINUS'):
op = self.tok.type
right = self.term()
if op == 'PLUS':
exprval += right
elif op == 'MINUS':
exprval -= right
return exprval
def term(self):
"term ::= factor { ('*'|'/') factor }*"
termval = self.factor()
while self._accept('TIMES') or self._accept('DIVIDE'):
op = self.tok.type
right = self.factor()
if op == 'TIMES':
termval *= right
elif op == 'DIVIDE':
termval /= right
return termval
def factor(self):
"factor ::= NUM | ( expr )"
if self._accept('NUM'):
return int(self.tok.value)
elif self._accept('LPAREN'):
exprval = self.expr()
self._expect('RPAREN')
return exprval
else:
raise SyntaxError('Expected NUMBER or LPAREN')
def descent_parser():
e = ExpressionEvaluator()
print(e.parse('2'))
print(e.parse('2 + 3'))
print(e.parse('2 + 3 * 4'))
print(e.parse('2 + (3 + 4) * 5'))
# print(e.parse('2 + (3 + * 4)'))
# Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
# File "exprparse.py", line 40, in parse
# return self.expr()
# File "exprparse.py", line 67, in expr
# right = self.term()
# File "exprparse.py", line 77, in term
# termval = self.factor()
# File "exprparse.py", line 93, in factor
# exprval = self.expr()
# File "exprparse.py", line 67, in expr
# right = self.term()
# File "exprparse.py", line 77, in term
# termval = self.factor()
# File "exprparse.py", line 97, in factor
# raise SyntaxError("Expected NUMBER or LPAREN")
# SyntaxError: Expected NUMBER or LPAREN
if __name__ == '__main__':
descent_parser()
## 討論
文本解析是一個很大的主題, 一般會占用學生學習編譯課程時剛開始的三周時間。如果你在找尋關于語法,解析算法等相關的背景知識的話,你應該去看一下編譯器書籍。很顯然,關于這方面的內容太多,不可能在這里全部展開。
盡管如此,編寫一個遞歸下降解析器的整體思路是比較簡單的。開始的時候,你先獲得所有的語法規則,然后將其轉換為一個函數或者方法。因此如果你的語法類似這樣:
expr ::= term { ('+'|'-') term }*
term ::= factor { ('*'|'/') factor }*
factor ::= '(' expr ')'
| NUM
你應該首先將它們轉換成一組像下面這樣的方法:
class ExpressionEvaluator:
...
def expr(self):
...
def term(self):
...
def factor(self):
...
每個方法要完成的任務很簡單 - 它必須從左至右遍歷語法規則的每一部分,處理每個令牌。從某種意義上講,方法的目的就是要么處理完語法規則,要么產生一個語法錯誤。為了這樣做,需采用下面的這些實現方法:
- 如果規則中的下個符號是另外一個語法規則的名字(比如term或factor),就簡單的調用同名的方法即可。這就是該算法中”下降”的由來 - 控制下降到另一個語法規則中去。有時候規則會調用已經執行的方法(比如,在 `factor ::= '('expr ')'` 中對expr的調用)。這就是算法中”遞歸”的由來。
- 如果規則中下一個符號是個特殊符號(比如(),你得查找下一個令牌并確認是一個精確匹配)。如果不匹配,就產生一個語法錯誤。這一節中的 `_expect()` 方法就是用來做這一步的。
- 如果規則中下一個符號為一些可能的選擇項(比如 + 或 -),你必須對每一種可能情況檢查下一個令牌,只有當它匹配一個的時候才能繼續。這也是本節示例中 `_accept()` 方法的目的。它相當于_expect()方法的弱化版本,因為如果一個匹配找到了它會繼續,但是如果沒找到,它不會產生錯誤而是回滾(允許后續的檢查繼續進行)。
- 對于有重復部分的規則(比如在規則表達式 `::= term { ('+'|'-') term }*` 中),重復動作通過一個while循環來實現。循環主體會收集或處理所有的重復元素直到沒有其他元素可以找到。
- 一旦整個語法規則處理完成,每個方法會返回某種結果給調用者。這就是在解析過程中值是怎樣累加的原理。比如,在表達式求值程序中,返回值代表表達式解析后的部分結果。最后所有值會在最頂層的語法規則方法中合并起來。
盡管向你演示的是一個簡單的例子,遞歸下降解析器可以用來實現非常復雜的解析。比如,Python語言本身就是通過一個遞歸下降解析器去解釋的。如果你對此感興趣,你可以通過查看Python源碼文件Grammar/Grammar來研究下底層語法機制。看完你會發現,通過手動方式去實現一個解析器其實會有很多的局限和不足之處。
其中一個局限就是它們不能被用于包含任何左遞歸的語法規則中。比如,加入你需要翻譯下面這樣一個規則:
items ::= items ',' item
| item
為了這樣做,你可能會像下面這樣使用 `items()` 方法:
def items(self):
itemsval = self.items()
if itemsval and self._accept(','):
itemsval.append(self.item())
else:
itemsval = [ self.item() ]
唯一的問題是這個方法根本不能工作,事實上,它會產生一個無限遞歸錯誤。
關于語法規則本身你可能也會碰到一些棘手的問題。比如,你可能想知道下面這個簡單扼語法是否表述得當:
expr ::= factor { ('+'|'-'|'*'|'/') factor }*
factor ::= '(' expression ')'
| NUM
這個語法看上去沒啥問題,但是它卻不能察覺到標準四則運算中的運算符優先級。比如,表達式 `"3 + 4 * 5"` 會得到35而不是期望的23.分開使用”expr”和”term”規則可以讓它正確的工作。
對于復雜的語法,你最好是選擇某個解析工具比如PyParsing或者是PLY。下面是使用PLY來重寫表達式求值程序的代碼:
from ply.lex import lex
from ply.yacc import yacc
# Token list
tokens = [ 'NUM', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'LPAREN', 'RPAREN' ]
# Ignored characters
t_ignore = ' \t\n'
# Token specifications (as regexs)
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'\*'
t_DIVIDE = r'/'
t_LPAREN = r'\('
t_RPAREN = r'\)'
# Token processing functions
def t_NUM(t):
r'\d+'
t.value = int(t.value)
return t
# Error handler
def t_error(t):
print('Bad character: {!r}'.format(t.value[0]))
t.skip(1)
# Build the lexer
lexer = lex()
# Grammar rules and handler functions
def p_expr(p):
'''
expr : expr PLUS term
| expr MINUS term
'''
if p[2] == '+':
p[0] = p[1] + p[3]
elif p[2] == '-':
p[0] = p[1] - p[3]
def p_expr_term(p):
'''
expr : term
'''
p[0] = p[1]
def p_term(p):
'''
term : term TIMES factor
| term DIVIDE factor
'''
if p[2] == '*':
p[0] = p[1] * p[3]
elif p[2] == '/':
p[0] = p[1] / p[3]
def p_term_factor(p):
'''
term : factor
'''
p[0] = p[1]
def p_factor(p):
'''
factor : NUM
'''
p[0] = p[1]
def p_factor_group(p):
'''
factor : LPAREN expr RPAREN
'''
p[0] = p[2]
def p_error(p):
print('Syntax error')
parser = yacc()
這個程序中,所有代碼都位于一個比較高的層次。你只需要為令牌寫正則表達式和規則匹配時的高階處理函數即可。而實際的運行解析器,接受令牌等等底層動作已經被庫函數實現了。
下面是一個怎樣使用得到的解析對象的例子:
>>> parser.parse('2')
2
>>> parser.parse('2+3')
5
>>> parser.parse('2+(3+4)*5')
37
>>>
如果你想在你的編程過程中來點挑戰和刺激,編寫解析器和編譯器是個不錯的選擇。再次,一本編譯器的書籍會包含很多底層的理論知識。不過很多好的資源也可以在網上找到。Python自己的ast模塊也值得去看一下。
- Copyright
- 前言
- 第一章:數據結構和算法
- 1.1 解壓序列賦值給多個變量
- 1.2 解壓可迭代對象賦值給多個變量
- 1.3 保留最后N個元素
- 1.4 查找最大或最小的N個元素
- 1.5 實現一個優先級隊列
- 1.6 字典中的鍵映射多個值
- 1.7 字典排序
- 1.8 字典的運算
- 1.9 查找兩字典的相同點
- 1.10 刪除序列相同元素并保持順序
- 1.11 命名切片
- 1.12 序列中出現次數最多的元素
- 1.13 通過某個關鍵字排序一個字典列表
- 1.14 排序不支持原生比較的對象
- 1.15 通過某個字段將記錄分組
- 1.16 過濾序列元素
- 1.17 從字典中提取子集
- 1.18 映射名稱到序列元素
- 1.19 轉換并同時計算數據
- 1.20 合并多個字典或映射
- 第二章:字符串和文本
- 2.1 使用多個界定符分割字符串
- 2.2 字符串開頭或結尾匹配
- 2.3 用Shell通配符匹配字符串
- 2.4 字符串匹配和搜索
- 2.5 字符串搜索和替換
- 2.6 字符串忽略大小寫的搜索替換
- 2.7 最短匹配模式
- 2.8 多行匹配模式
- 2.9 將Unicode文本標準化
- 2.10 在正則式中使用Unicode
- 2.11 刪除字符串中不需要的字符
- 2.12 審查清理文本字符串
- 2.13 字符串對齊
- 2.14 合并拼接字符串
- 2.15 字符串中插入變量
- 2.16 以指定列寬格式化字符串
- 2.17 在字符串中處理html和xml
- 2.18 字符串令牌解析
- 2.19 實現一個簡單的遞歸下降分析器
- 2.20 字節字符串上的字符串操作
- 第三章:數字日期和時間
- 3.1 數字的四舍五入
- 3.2 執行精確的浮點數運算
- 3.3 數字的格式化輸出
- 3.4 二八十六進制整數
- 3.5 字節到大整數的打包與解包
- 3.6 復數的數學運算
- 3.7 無窮大與NaN
- 3.8 分數運算
- 3.9 大型數組運算
- 3.10 矩陣與線性代數運算
- 3.11 隨機選擇
- 3.12 基本的日期與時間轉換
- 3.13 計算最后一個周五的日期
- 3.14 計算當前月份的日期范圍
- 3.15 字符串轉換為日期
- 3.16 結合時區的日期操作
- 第四章:迭代器與生成器
- 4.1 手動遍歷迭代器
- 4.2 代理迭代
- 4.3 使用生成器創建新的迭代模式
- 4.4 實現迭代器協議
- 4.5 反向迭代
- 4.6 帶有外部狀態的生成器函數
- 4.7 迭代器切片
- 4.8 跳過可迭代對象的開始部分
- 4.9 排列組合的迭代
- 4.10 序列上索引值迭代
- 4.11 同時迭代多個序列
- 4.12 不同集合上元素的迭代
- 4.13 創建數據處理管道
- 4.14 展開嵌套的序列
- 4.15 順序迭代合并后的排序迭代對象
- 4.16 迭代器代替while無限循環
- 第五章:文件與IO
- 5.1 讀寫文本數據
- 5.2 打印輸出至文件中
- 5.3 使用其他分隔符或行終止符打印
- 5.4 讀寫字節數據
- 5.5 文件不存在才能寫入
- 5.6 字符串的I/O操作
- 5.7 讀寫壓縮文件
- 5.8 固定大小記錄的文件迭代
- 5.9 讀取二進制數據到可變緩沖區中
- 5.10 內存映射的二進制文件
- 5.11 文件路徑名的操作
- 5.12 測試文件是否存在
- 5.13 獲取文件夾中的文件列表
- 5.14 忽略文件名編碼
- 5.15 打印不合法的文件名
- 5.16 增加或改變已打開文件的編碼
- 5.17 將字節寫入文本文件
- 5.18 將文件描述符包裝成文件對象
- 5.19 創建臨時文件和文件夾
- 5.20 與串行端口的數據通信
- 5.21 序列化Python對象
- 第六章:數據編碼和處理
- 6.1 讀寫CSV數據
- 6.2 讀寫JSON數據
- 6.3 解析簡單的XML數據
- 6.4 增量式解析大型XML文件
- 6.5 將字典轉換為XML
- 6.6 解析和修改XML
- 6.7 利用命名空間解析XML文檔
- 6.8 與關系型數據庫的交互
- 6.9 編碼和解碼十六進制數
- 6.10 編碼解碼Base64數據
- 6.11 讀寫二進制數組數據
- 6.12 讀取嵌套和可變長二進制數據
- 6.13 數據的累加與統計操作
- 第七章:函數
- 7.1 可接受任意數量參數的函數
- 7.2 只接受關鍵字參數的函數
- 7.3 給函數參數增加元信息
- 7.4 返回多個值的函數
- 7.5 定義有默認參數的函數
- 7.6 定義匿名或內聯函數
- 7.7 匿名函數捕獲變量值
- 7.8 減少可調用對象的參數個數
- 7.9 將單方法的類轉換為函數
- 7.10 帶額外狀態信息的回調函數
- 7.11 內聯回調函數
- 7.12 訪問閉包中定義的變量
- 第八章:類與對象
- 8.1 改變對象的字符串顯示
- 8.2 自定義字符串的格式化
- 8.3 讓對象支持上下文管理協議
- 8.4 創建大量對象時節省內存方法
- 8.5 在類中封裝屬性名
- 8.6 創建可管理的屬性
- 8.7 調用父類方法
- 8.8 子類中擴展property
- 8.9 創建新的類或實例屬性
- 8.10 使用延遲計算屬性
- 8.11 簡化數據結構的初始化
- 8.12 定義接口或者抽象基類
- 8.13 實現數據模型的類型約束
- 8.14 實現自定義容器
- 8.15 屬性的代理訪問
- 8.16 在類中定義多個構造器
- 8.17 創建不調用init方法的實例
- 8.18 利用Mixins擴展類功能
- 8.19 實現狀態對象或者狀態機
- 8.20 通過字符串調用對象方法
- 8.21 實現訪問者模式
- 8.22 不用遞歸實現訪問者模式
- 8.23 循環引用數據結構的內存管理
- 8.24 讓類支持比較操作
- 8.25 創建緩存實例
- 第九章:元編程
- 9.1 在函數上添加包裝器
- 9.2 創建裝飾器時保留函數元信息
- 9.3 解除一個裝飾器
- 9.4 定義一個帶參數的裝飾器
- 9.5 可自定義屬性的裝飾器
- 9.6 帶可選參數的裝飾器
- 9.7 利用裝飾器強制函數上的類型檢查
- 9.8 將裝飾器定義為類的一部分
- 9.9 將裝飾器定義為類
- 9.10 為類和靜態方法提供裝飾器
- 9.11 裝飾器為被包裝函數增加參數
- 9.12 使用裝飾器擴充類的功能
- 9.13 使用元類控制實例的創建
- 9.14 捕獲類的屬性定義順序
- 9.15 定義有可選參數的元類
- 9.16 *args和**kwargs的強制參數簽名
- 9.17 在類上強制使用編程規約
- 9.18 以編程方式定義類
- 9.19 在定義的時候初始化類的成員
- 9.20 利用函數注解實現方法重載
- 9.21 避免重復的屬性方法
- 9.22 定義上下文管理器的簡單方法
- 9.23 在局部變量域中執行代碼
- 9.24 解析與分析Python源碼
- 9.25 拆解Python字節碼
- 第十章:模塊與包
- 10.1 構建一個模塊的層級包
- 10.2 控制模塊被全部導入的內容
- 10.3 使用相對路徑名導入包中子模塊
- 10.4 將模塊分割成多個文件
- 10.5 利用命名空間導入目錄分散的代碼
- 10.6 重新加載模塊
- 10.7 運行目錄或壓縮文件
- 10.8 讀取位于包中的數據文件
- 10.9 將文件夾加入到sys.path
- 10.10 通過字符串名導入模塊
- 10.11 通過導入鉤子遠程加載模塊
- 10.12 導入模塊的同時修改模塊
- 10.13 安裝私有的包
- 10.14 創建新的Python環境
- 10.15 分發包
- 第十一章:網絡與Web編程
- 11.1 作為客戶端與HTTP服務交互
- 11.2 創建TCP服務器
- 11.3 創建UDP服務器
- 11.4 通過CIDR地址生成對應的IP地址集
- 11.5 生成一個簡單的REST接口
- 11.6 通過XML-RPC實現簡單的遠程調用
- 11.7 在不同的Python解釋器之間交互
- 11.8 實現遠程方法調用
- 11.9 簡單的客戶端認證
- 11.10 在網絡服務中加入SSL
- 11.11 進程間傳遞Socket文件描述符
- 11.12 理解事件驅動的IO
- 11.13 發送與接收大型數組
- 第十二章:并發編程
- 12.1 啟動與停止線程
- 12.2 判斷線程是否已經啟動
- 12.3 線程間的通信
- 12.4 給關鍵部分加鎖
- 12.5 防止死鎖的加鎖機制
- 12.6 保存線程的狀態信息
- 12.7 創建一個線程池
- 12.8 簡單的并行編程
- 12.9 Python的全局鎖問題
- 12.10 定義一個Actor任務
- 12.11 實現消息發布/訂閱模型
- 12.12 使用生成器代替線程
- 12.13 多個線程隊列輪詢
- 12.14 在Unix系統上面啟動守護進程
- 第十三章:腳本編程與系統管理
- 13.1 通過重定向/管道/文件接受輸入
- 13.2 終止程序并給出錯誤信息
- 13.3 解析命令行選項
- 13.4 運行時彈出密碼輸入提示
- 13.5 獲取終端的大小
- 13.6 執行外部命令并獲取它的輸出
- 13.7 復制或者移動文件和目錄
- 13.8 創建和解壓壓縮文件
- 13.9 通過文件名查找文件
- 13.10 讀取配置文件
- 13.11 給簡單腳本增加日志功能
- 13.12 給內庫增加日志功能
- 13.13 記錄程序執行的時間
- 13.14 限制內存和CPU的使用量
- 13.15 啟動一個WEB瀏覽器
- 第十四章:測試調試和異常
- 14.1 測試輸出到標準輸出上
- 14.2 在單元測試中給對象打補丁
- 14.3 在單元測試中測試異常情況
- 14.4 將測試輸出用日志記錄到文件中
- 14.5 忽略或者期望測試失敗
- 14.6 處理多個異常
- 14.7 捕獲所有異常
- 14.8 創建自定義異常
- 14.9 捕獲異常后拋出另外的異常
- 14.10 重新拋出最后的異常
- 14.11 輸出警告信息
- 14.12 調試基本的程序崩潰錯誤
- 14.13 給你的程序做基準測試
- 14.14 讓你的程序跑的更快
- 第十五章:C語言擴展
- 15.1 使用ctypes訪問C代碼
- 15.2 簡單的C擴展模塊
- 15.3 一個操作數組的擴展函數
- 15.4 在C擴展模塊中操作隱形指針
- 15.5 從擴張模塊中定義和導出C的API
- 15.6 從C語言中調用Python代碼
- 15.7 從C擴展中釋放全局鎖
- 15.8 C和Python中的線程混用
- 15.9 用WSIG包裝C代碼
- 15.10 用Cython包裝C代碼
- 15.11 用Cython寫高性能的數組操作
- 15.12 將函數指針轉換為可調用對象
- 15.13 傳遞NULL結尾的字符串給C函數庫
- 15.14 傳遞Unicode字符串給C函數庫
- 15.15 C字符串轉換為Python字符串
- 15.16 不確定編碼格式的C字符串
- 15.17 傳遞文件名給C擴展
- 15.18 傳遞已打開的文件給C擴展
- 15.19 從C語言中讀取類文件對象
- 15.20 處理C語言中的可迭代對象
- 15.21 診斷分析代碼錯誤
- 附錄A
- 關于譯者
- Roadmap