## 問題
Your program runs too slow and you’d like to speed it up without the assistance of moreextreme solutions, such as C extensions or a just-in-time (JIT) compiler.
## 解決方案
While the first rule of optimization might be to “not do it,” the second rule is almostcertainly “don’t optimize the unimportant.” To that end, if your program is running slow,you might start by profiling your code as discussed in Recipe 14.13.More often than not, you’ll find that your program spends its time in a few hotspots,such as inner data processing loops. Once you’ve identified those locations, you can usethe no-nonsense techniques presented in the following sections to make your programrun faster.
Use functionsA lot of programmers start using Python as a language for writing simple scripts. Whenwriting scripts, it is easy to fall into a practice of simply writing code with very littlestructure. For example:
# somescript.py
import sysimport csv
with open(sys.argv[1]) as f:
for row in csv.reader(f):
> # Some kind of processing...
A little-known fact is that code defined in the global scope like this runs slower thancode defined in a function. The speed difference has to do with the implementation oflocal versus global variables (operations involving locals are faster). So, if you want tomake the program run faster, simply put the scripting statements in a function:
# somescript.pyimport sysimport csv
def main(filename):with open(filename) as f:for row in csv.reader(f):# Some kind of processing...
main(sys.argv[1])
The speed difference depends heavily on the processing being performed, but in ourexperience, speedups of 15-30% are not uncommon.
Selectively eliminate attribute accessEvery use of the dot (.) operator to access attributes comes with a cost. Under the covers,this triggers special methods, such as __getattribute__() and __getattr__(), whichoften lead to dictionary lookups.You can often avoid attribute lookups by using the from module import name form ofimport as well as making selected use of bound methods. To illustrate, consider thefollowing code fragment:
import math
def compute_roots(nums):
result = []for n in nums:
> result.append(math.sqrt(n))
return result
# Testnums = range(1000000)for n in range(100):
> r = compute_roots(nums)
When tested on our machine, this program runs in about 40 seconds. Now change thecompute_roots() function as follows:
from math import sqrt
def compute_roots(nums):
> > result = []result_append = result.appendfor n in nums:
> > result_append(sqrt(n))
> return result
This version runs in about 29 seconds. The only difference between the two versions ofcode is the elimination of attribute access. Instead of using math.sqrt(), the code usessqrt(). The result.append() method is additionally placed into a local variable result_append and reused in the inner loop.However, it must be emphasized that these changes only make sense in frequently ex‐ecuted code, such as loops. So, this optimization really only makes sense in carefullyselected places.
Understand locality of variablesAs previously noted, local variables are faster than global variables. For frequently ac‐cessed names, speedups can be obtained by making those names as local as possible.For example, consider this modified version of the compute_roots() function justdiscussed:
import math
def compute_roots(nums):
sqrt = math.sqrtresult = []result_append = result.appendfor n in nums:
> result_append(sqrt(n))
return result
In this version, sqrt has been lifted from the math module and placed into a localvariable. If you run this code, it now runs in about 25 seconds (an improvement overthe previous version, which took 29 seconds). That additional speedup is due to a locallookup of sqrt being a bit faster than a global lookup of sqrt.Locality arguments also apply when working in classes. In general, looking up a valuesuch as self.name will be considerably slower than accessing a local variable. In innerloops, it might pay to lift commonly accessed attributes into a local variable. For example:
# Slowerclass SomeClass:
> > ...def method(self):
> > for x in s:op(self.value)
# Fasterclass SomeClass:
> > ...def method(self):
> > > > value = self.valuefor x in s:
> > > op(value)
Avoid gratuitous abstractionAny time you wrap up code with extra layers of processing, such as decorators, prop‐erties, or descriptors, you’re going to make it slower. As an example, consider this class:
class A:def __init__(self, x, y):self.x = xself.y = y
@propertydef y(self):
> return self._y
@y.setterdef y(self, value):
> self._y = value
Now, try a simple timing test:
>>> from timeit import timeit
>>> a = A(1,2)
>>> timeit('a.x', 'from __main__ import a')
0.07817923510447145
>>> timeit('a.y', 'from __main__ import a')
0.35766440676525235
>>>
As you can observe, accessing the property y is not just slightly slower than a simpleattribute x, it’s about 4.5 times slower. If this difference matters, you should ask yourselfif the definition of y as a property was really necessary. If not, simply get rid of it andgo back to using a simple attribute instead. Just because it might be common for pro‐grams in another programming language to use getter/setter functions, that doesn’tmean you should adopt that programming style for Python.
Use the built-in containersBuilt-in data types such as strings, tuples, lists, sets, and dicts are all implemented in C,and are rather fast. If you’re inclined to make your own data structures as a replacement(e.g., linked lists, balanced trees, etc.), it may be rather difficult if not impossible to matchthe speed of the built-ins. Thus, you’re often better off just using them.
Avoid making unnecessary data structures or copiesSometimes programmers get carried away with making unnecessary data structureswhen they just don’t have to. For example, someone might write code like this:
values = [x for x in sequence]squares = [x*x for x in values]
Perhaps the thinking here is to first collect a bunch of values into a list and then to startapplying operations such as list comprehensions to it. However, the first list is com‐pletely unnecessary. Simply write the code like this:
squares = [x*x for x in sequence]
Related to this, be on the lookout for code written by programmers who are overlyparanoid about Python’s sharing of values. Overuse of functions such as copy.deepcopy() may be a sign of code that’s been written by someone who doesn’t fully under‐stand or trust Python’s memory model. In such code, it may be safe to eliminate manyof the copies.
## 討論
Before optimizing, it’s usually worthwhile to study the algorithms that you’re using first.You’ll get a much bigger speedup by switching to an O(n log n) algorithm than bytrying to tweak the implementation of an an O(n**2) algorithm.If you’ve decided that you still must optimize, it pays to consider the big picture. As ageneral rule, you don’t want to apply optimizations to every part of your program,because such changes are going to make the code hard to read and understand. Instead,focus only on known performance bottlenecks, such as inner loops.You need to be especially wary interpreting the results of micro-optimizations. Forexample, consider these two techniques for creating a dictionary:
a = {‘name' : ‘AAPL',‘shares' : 100,‘price' : 534.22
}
b = dict(name='AAPL', shares=100, price=534.22)
The latter choice has the benefit of less typing (you don’t need to quote the key names).However, if you put the two code fragments in a head-to-head performance battle, you’llfind that using dict() runs three times slower! With this knowledge, you might beinclined to scan your code and replace every use of dict() with its more verbose al‐ternative. However, a smart programmer will only focus on parts of a program whereit might actually matter, such as an inner loop. In other places, the speed difference justisn’t going to matter at all.If, on the other hand, your performance needs go far beyond the simple techniques inthis recipe, you might investigate the use of tools based on just-in-time (JIT) compilationtechniques. For example, the PyPy project is an alternate implementation of the Python
interpreter that analyzes the execution of your program and generates native machinecode for frequently executed parts. It can sometimes make Python programs run anorder of magnitude faster, often approaching (or even exceeding) the speed of codewritten in C. Unfortunately, as of this writing, PyPy does not yet fully support Python3. So, that is something to look for in the future. You might also consider the Numbaproject. Numba is a dynamic compiler where you annotate selected Python functionsthat you want to optimize with a decorator. Those functions are then compiled intonative machine code through the use of LLVM. It too can produce signficant perfor‐mance gains. However, like PyPy, support for Python 3 should be viewed as somewhatexperimental.Last, but not least, the words of John Ousterhout come to mind: “The best performanceimprovement is the transition from the nonworking to the working state.” Don’t worryabout optimization until you need to. Making sure your program works correctly isusually more important than making it run fast (at least initially).
- Copyright
- 前言
- 第一章:數據結構和算法
- 1.1 解壓序列賦值給多個變量
- 1.2 解壓可迭代對象賦值給多個變量
- 1.3 保留最后N個元素
- 1.4 查找最大或最小的N個元素
- 1.5 實現一個優先級隊列
- 1.6 字典中的鍵映射多個值
- 1.7 字典排序
- 1.8 字典的運算
- 1.9 查找兩字典的相同點
- 1.10 刪除序列相同元素并保持順序
- 1.11 命名切片
- 1.12 序列中出現次數最多的元素
- 1.13 通過某個關鍵字排序一個字典列表
- 1.14 排序不支持原生比較的對象
- 1.15 通過某個字段將記錄分組
- 1.16 過濾序列元素
- 1.17 從字典中提取子集
- 1.18 映射名稱到序列元素
- 1.19 轉換并同時計算數據
- 1.20 合并多個字典或映射
- 第二章:字符串和文本
- 2.1 使用多個界定符分割字符串
- 2.2 字符串開頭或結尾匹配
- 2.3 用Shell通配符匹配字符串
- 2.4 字符串匹配和搜索
- 2.5 字符串搜索和替換
- 2.6 字符串忽略大小寫的搜索替換
- 2.7 最短匹配模式
- 2.8 多行匹配模式
- 2.9 將Unicode文本標準化
- 2.10 在正則式中使用Unicode
- 2.11 刪除字符串中不需要的字符
- 2.12 審查清理文本字符串
- 2.13 字符串對齊
- 2.14 合并拼接字符串
- 2.15 字符串中插入變量
- 2.16 以指定列寬格式化字符串
- 2.17 在字符串中處理html和xml
- 2.18 字符串令牌解析
- 2.19 實現一個簡單的遞歸下降分析器
- 2.20 字節字符串上的字符串操作
- 第三章:數字日期和時間
- 3.1 數字的四舍五入
- 3.2 執行精確的浮點數運算
- 3.3 數字的格式化輸出
- 3.4 二八十六進制整數
- 3.5 字節到大整數的打包與解包
- 3.6 復數的數學運算
- 3.7 無窮大與NaN
- 3.8 分數運算
- 3.9 大型數組運算
- 3.10 矩陣與線性代數運算
- 3.11 隨機選擇
- 3.12 基本的日期與時間轉換
- 3.13 計算最后一個周五的日期
- 3.14 計算當前月份的日期范圍
- 3.15 字符串轉換為日期
- 3.16 結合時區的日期操作
- 第四章:迭代器與生成器
- 4.1 手動遍歷迭代器
- 4.2 代理迭代
- 4.3 使用生成器創建新的迭代模式
- 4.4 實現迭代器協議
- 4.5 反向迭代
- 4.6 帶有外部狀態的生成器函數
- 4.7 迭代器切片
- 4.8 跳過可迭代對象的開始部分
- 4.9 排列組合的迭代
- 4.10 序列上索引值迭代
- 4.11 同時迭代多個序列
- 4.12 不同集合上元素的迭代
- 4.13 創建數據處理管道
- 4.14 展開嵌套的序列
- 4.15 順序迭代合并后的排序迭代對象
- 4.16 迭代器代替while無限循環
- 第五章:文件與IO
- 5.1 讀寫文本數據
- 5.2 打印輸出至文件中
- 5.3 使用其他分隔符或行終止符打印
- 5.4 讀寫字節數據
- 5.5 文件不存在才能寫入
- 5.6 字符串的I/O操作
- 5.7 讀寫壓縮文件
- 5.8 固定大小記錄的文件迭代
- 5.9 讀取二進制數據到可變緩沖區中
- 5.10 內存映射的二進制文件
- 5.11 文件路徑名的操作
- 5.12 測試文件是否存在
- 5.13 獲取文件夾中的文件列表
- 5.14 忽略文件名編碼
- 5.15 打印不合法的文件名
- 5.16 增加或改變已打開文件的編碼
- 5.17 將字節寫入文本文件
- 5.18 將文件描述符包裝成文件對象
- 5.19 創建臨時文件和文件夾
- 5.20 與串行端口的數據通信
- 5.21 序列化Python對象
- 第六章:數據編碼和處理
- 6.1 讀寫CSV數據
- 6.2 讀寫JSON數據
- 6.3 解析簡單的XML數據
- 6.4 增量式解析大型XML文件
- 6.5 將字典轉換為XML
- 6.6 解析和修改XML
- 6.7 利用命名空間解析XML文檔
- 6.8 與關系型數據庫的交互
- 6.9 編碼和解碼十六進制數
- 6.10 編碼解碼Base64數據
- 6.11 讀寫二進制數組數據
- 6.12 讀取嵌套和可變長二進制數據
- 6.13 數據的累加與統計操作
- 第七章:函數
- 7.1 可接受任意數量參數的函數
- 7.2 只接受關鍵字參數的函數
- 7.3 給函數參數增加元信息
- 7.4 返回多個值的函數
- 7.5 定義有默認參數的函數
- 7.6 定義匿名或內聯函數
- 7.7 匿名函數捕獲變量值
- 7.8 減少可調用對象的參數個數
- 7.9 將單方法的類轉換為函數
- 7.10 帶額外狀態信息的回調函數
- 7.11 內聯回調函數
- 7.12 訪問閉包中定義的變量
- 第八章:類與對象
- 8.1 改變對象的字符串顯示
- 8.2 自定義字符串的格式化
- 8.3 讓對象支持上下文管理協議
- 8.4 創建大量對象時節省內存方法
- 8.5 在類中封裝屬性名
- 8.6 創建可管理的屬性
- 8.7 調用父類方法
- 8.8 子類中擴展property
- 8.9 創建新的類或實例屬性
- 8.10 使用延遲計算屬性
- 8.11 簡化數據結構的初始化
- 8.12 定義接口或者抽象基類
- 8.13 實現數據模型的類型約束
- 8.14 實現自定義容器
- 8.15 屬性的代理訪問
- 8.16 在類中定義多個構造器
- 8.17 創建不調用init方法的實例
- 8.18 利用Mixins擴展類功能
- 8.19 實現狀態對象或者狀態機
- 8.20 通過字符串調用對象方法
- 8.21 實現訪問者模式
- 8.22 不用遞歸實現訪問者模式
- 8.23 循環引用數據結構的內存管理
- 8.24 讓類支持比較操作
- 8.25 創建緩存實例
- 第九章:元編程
- 9.1 在函數上添加包裝器
- 9.2 創建裝飾器時保留函數元信息
- 9.3 解除一個裝飾器
- 9.4 定義一個帶參數的裝飾器
- 9.5 可自定義屬性的裝飾器
- 9.6 帶可選參數的裝飾器
- 9.7 利用裝飾器強制函數上的類型檢查
- 9.8 將裝飾器定義為類的一部分
- 9.9 將裝飾器定義為類
- 9.10 為類和靜態方法提供裝飾器
- 9.11 裝飾器為被包裝函數增加參數
- 9.12 使用裝飾器擴充類的功能
- 9.13 使用元類控制實例的創建
- 9.14 捕獲類的屬性定義順序
- 9.15 定義有可選參數的元類
- 9.16 *args和**kwargs的強制參數簽名
- 9.17 在類上強制使用編程規約
- 9.18 以編程方式定義類
- 9.19 在定義的時候初始化類的成員
- 9.20 利用函數注解實現方法重載
- 9.21 避免重復的屬性方法
- 9.22 定義上下文管理器的簡單方法
- 9.23 在局部變量域中執行代碼
- 9.24 解析與分析Python源碼
- 9.25 拆解Python字節碼
- 第十章:模塊與包
- 10.1 構建一個模塊的層級包
- 10.2 控制模塊被全部導入的內容
- 10.3 使用相對路徑名導入包中子模塊
- 10.4 將模塊分割成多個文件
- 10.5 利用命名空間導入目錄分散的代碼
- 10.6 重新加載模塊
- 10.7 運行目錄或壓縮文件
- 10.8 讀取位于包中的數據文件
- 10.9 將文件夾加入到sys.path
- 10.10 通過字符串名導入模塊
- 10.11 通過導入鉤子遠程加載模塊
- 10.12 導入模塊的同時修改模塊
- 10.13 安裝私有的包
- 10.14 創建新的Python環境
- 10.15 分發包
- 第十一章:網絡與Web編程
- 11.1 作為客戶端與HTTP服務交互
- 11.2 創建TCP服務器
- 11.3 創建UDP服務器
- 11.4 通過CIDR地址生成對應的IP地址集
- 11.5 生成一個簡單的REST接口
- 11.6 通過XML-RPC實現簡單的遠程調用
- 11.7 在不同的Python解釋器之間交互
- 11.8 實現遠程方法調用
- 11.9 簡單的客戶端認證
- 11.10 在網絡服務中加入SSL
- 11.11 進程間傳遞Socket文件描述符
- 11.12 理解事件驅動的IO
- 11.13 發送與接收大型數組
- 第十二章:并發編程
- 12.1 啟動與停止線程
- 12.2 判斷線程是否已經啟動
- 12.3 線程間的通信
- 12.4 給關鍵部分加鎖
- 12.5 防止死鎖的加鎖機制
- 12.6 保存線程的狀態信息
- 12.7 創建一個線程池
- 12.8 簡單的并行編程
- 12.9 Python的全局鎖問題
- 12.10 定義一個Actor任務
- 12.11 實現消息發布/訂閱模型
- 12.12 使用生成器代替線程
- 12.13 多個線程隊列輪詢
- 12.14 在Unix系統上面啟動守護進程
- 第十三章:腳本編程與系統管理
- 13.1 通過重定向/管道/文件接受輸入
- 13.2 終止程序并給出錯誤信息
- 13.3 解析命令行選項
- 13.4 運行時彈出密碼輸入提示
- 13.5 獲取終端的大小
- 13.6 執行外部命令并獲取它的輸出
- 13.7 復制或者移動文件和目錄
- 13.8 創建和解壓壓縮文件
- 13.9 通過文件名查找文件
- 13.10 讀取配置文件
- 13.11 給簡單腳本增加日志功能
- 13.12 給內庫增加日志功能
- 13.13 記錄程序執行的時間
- 13.14 限制內存和CPU的使用量
- 13.15 啟動一個WEB瀏覽器
- 第十四章:測試調試和異常
- 14.1 測試輸出到標準輸出上
- 14.2 在單元測試中給對象打補丁
- 14.3 在單元測試中測試異常情況
- 14.4 將測試輸出用日志記錄到文件中
- 14.5 忽略或者期望測試失敗
- 14.6 處理多個異常
- 14.7 捕獲所有異常
- 14.8 創建自定義異常
- 14.9 捕獲異常后拋出另外的異常
- 14.10 重新拋出最后的異常
- 14.11 輸出警告信息
- 14.12 調試基本的程序崩潰錯誤
- 14.13 給你的程序做基準測試
- 14.14 讓你的程序跑的更快
- 第十五章:C語言擴展
- 15.1 使用ctypes訪問C代碼
- 15.2 簡單的C擴展模塊
- 15.3 一個操作數組的擴展函數
- 15.4 在C擴展模塊中操作隱形指針
- 15.5 從擴張模塊中定義和導出C的API
- 15.6 從C語言中調用Python代碼
- 15.7 從C擴展中釋放全局鎖
- 15.8 C和Python中的線程混用
- 15.9 用WSIG包裝C代碼
- 15.10 用Cython包裝C代碼
- 15.11 用Cython寫高性能的數組操作
- 15.12 將函數指針轉換為可調用對象
- 15.13 傳遞NULL結尾的字符串給C函數庫
- 15.14 傳遞Unicode字符串給C函數庫
- 15.15 C字符串轉換為Python字符串
- 15.16 不確定編碼格式的C字符串
- 15.17 傳遞文件名給C擴展
- 15.18 傳遞已打開的文件給C擴展
- 15.19 從C語言中讀取類文件對象
- 15.20 處理C語言中的可迭代對象
- 15.21 診斷分析代碼錯誤
- 附錄A
- 關于譯者
- Roadmap