<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ## 快速排序 快速排序(英語:Quicksort),又稱劃分交換排序(partition-exchange sort),通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然后再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。 步驟為: 1. 從數列中挑出一個元素,稱為"基準"(pivot), 2. 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數可以到任一邊)。在這個分區結束之后,該基準就處于數列的中間位置。這個稱為分區(partition)操作。 3. 遞歸地(recursive)把小于基準值元素的子數列和大于基準值元素的子數列排序。 遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個算法總會結束,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最后的位置去。 ## 快速排序的分析 ![](https://box.kancloud.cn/5b03f63ce0759cd2b112fece91cdb81e_1040x1199.jpg) ~~~ def quick_sort(alist, start, end): """快速排序""" # 遞歸的退出條件 if start >= end: return # 設定起始元素為要尋找位置的基準元素 mid = alist[start] # low為序列左邊的由左向右移動的游標 low = start # high為序列右邊的由右向左移動的游標 high = end while low < high: # 如果low與high未重合,high指向的元素不比基準元素小,則high向左移動 while low < high and alist[high] >= mid: high -= 1 # 將high指向的元素放到low的位置上 alist[low] = alist[high] # 如果low與high未重合,low指向的元素比基準元素小,則low向右移動 while low < high and alist[low] < mid: low += 1 # 將low指向的元素放到high的位置上 alist[high] = alist[low] # 退出循環后,low與high重合,此時所指位置為基準元素的正確位置 # 將基準元素放到該位置 alist[low] = mid # 對基準元素左邊的子序列進行快速排序 quick_sort(alist, start, low-1) # 對基準元素右邊的子序列進行快速排序 quick_sort(alist, low+1, end) alist = [54,26,93,17,77,31,44,55,20] quick_sort(alist,0,len(alist)-1) print(alist) ~~~ ## 時間復雜度 * 最優時間復雜度:O(nlogn) * 最壞時間復雜度:O(n2) * 穩定性:不穩定 從一開始快速排序平均需要花費O(n log n)時間的描述并不明顯。但是不難觀察到的是分區運算,數組的元素都會在每次循環中走訪過一次,使用O(n)的時間。在使用結合(concatenation)的版本中,這項運算也是O(n)。 在最好的情況,每次我們運行一次分區,我們會把一個數列分為兩個幾近相等的片段。這個意思就是每次遞歸調用處理一半大小的數列。因此,在到達大小為一的數列前,我們只要作log n次嵌套的調用。這個意思就是調用樹的深度是O(log n)。但是在同一層次結構的兩個程序調用中,不會處理到原來數列的相同部分;因此,程序調用的每一層次結構總共全部僅需要O(n)的時間(每個調用有某些共同的額外耗費,但是因為在每一層次結構僅僅只有O(n)個調用,這些被歸納在O(n)系數中)。結果是這個算法僅需使用O(n log n)時間。 ## 快速排序演示 ![](https://box.kancloud.cn/6f3c06199a829566c1b5e4c1c06dcb73_382x373.gif)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看