<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> # Unique Full Permutation - 唯一的全排列 -------- #### 問題 <p id="i">求擁有\(n\)個不同元素的數組\(A = [a_0,a_1,a_2,…,a_{n-1}]\)的唯一的全排列,其中數組\(A\)中存在重復的元素。 </p> <p id="i">比如\(A = [1, 2, 3_1, 3_2]\),其全排列為: </p> \[ [3_2, 3_1, 1, 2] \\ [3_1, 3_2, 1, 2] \\ [3_1, 1, 3_2, 2] \\ [3_1, 1, 2, 3_2] \\ [3_2, 1, 3_1, 2] \\ [1, 3_2, 3_1, 2] \\ [1, 3_1, 3_2, 2] \\ [1, 3_1, 2, 3_2] \\ [3_2, 1, 2, 3_1] \\ [1, 3_2, 2, 3_1] \\ [1, 2, 3_2, 3_1] \\ [1, 2, 3_1, 3_2] \\ [3_2, 3_1, 2, 1] \\ [3_1, 3_2, 2, 1] \\ [3_1, 2, 3_2, 1] \\ [3_1, 2, 1, 3_2] \\ [3_2, 2, 3_1, 1] \\ [2, 3_2, 3_1, 1] \\ [2, 3_1, 3_2, 1] \\ [2, 3_1, 1, 3_2] \\ [3_2, 2, 1, 3_1] \\ [2, 3_2, 1, 3_1] \\ [2, 1, 3_2, 3_1] \\ [2, 1, 3_1, 3_2] \] <p id="i">由于數組\(A\)中重復的元素,產生的全排列中也存在\([1, 2, 3_1, 3_2] [1, 2, 3_2, 3_1]\)這樣重復的排列,但實際上我們只需要一個\([1, 2, 3, 3]\)。因此它的唯一的全排列為: </p> \[ [3, 3, 1, 2] \\ [3, 1, 3, 2] \\ [3, 1, 2, 3] \\ [1, 3, 3, 2] \\ [1, 3, 2, 3] \\ [1, 2, 3, 3] \\ [3, 3, 2, 1] \\ [3, 2, 3, 1] \\ [3, 2, 1, 3] \\ [2, 3, 3, 1] \\ [2, 3, 1, 3] \\ [2, 1, 3, 3] \] 解法: <p id="i">在<FullPermutation>的基礎上。 </p> <p id="i">初始時假設數組\(A = []\),其全排列只有\(1\)個,即\([]\)本身。 </p> <p id="i">在初始狀態的基礎上增加新的元素,新的元素可以插入在原數組中的任意位置。例如對于數組\(B = [1, 2, 3]\),新元素\(x\)可以在\(3\)個元素中選擇\(4\)個任意位置插入,得到\(4\)種情況:</p> \[ [x, 1, 2, 3] \\ [1, x, 2, 3] \\ [1, 2, x, 3] \\ [1, 2, 3, x] \] <p id="i">\((1)\)在初始狀態\(A = []\)的基礎上增加新的元素\(a_0\),新元素的位置是唯一的,得到\(A = [a_0]\)。得到\(1\)個排列: </p> \[ [a_0] \\ \] <p id="i">\((2)\)在第\((1)\)輪的基礎上增加新的元素\(a_1\),新元素可以插入的位置有\(2\)個,得到的排列有\(2\)個: </p> \[ [a_0,a_1] \\ [a_1,a_0] \] <p id="i">\((3)\)在第\((2)\)輪的基礎上增加新的元素\(a_2\),對于第\((2)\)輪中的每個排列,新元素可以插入的位置都有\(3\)個,得到的排列共有\(2 \times 3 = 6\)個: </p> \[ [a_0,a_1,a_2] \\ [a_0,a_2,a_1] \\ [a_2,a_1,a_0] \\ [a_1,a_0,a_2] \\ [a_2,a_0,a_1] \\ [a_1,a_2,a_0] \] <p id="i">重復上述操作,即可得到長度為\(n\)的數組\(A = [a_0,a_1,a_2, \cdots ,a_{n-1}]\)的全排列。該算法的時間復雜度為\(O(n!)\)。 </p> </div> <br> Online Judge: * [leetcode-47](https://leetcode.com/problems/permutations-ii/) * [leetcode-47 source.hpp](https://github.com/zhaochenyou/Way-to-Algorithm/blob/master/attachment/leetcode-47.hpp) -------- * [Upper Folder - 上一級目錄](../) * [Source Code - 源碼](https://github.com/zhaochenyou/Way-to-Algorithm/blob/master/src/CombinatorialMathematics/UniqueFullPermutation.hpp) * [Test Code - 測試](https://github.com/zhaochenyou/Way-to-Algorithm/blob/master/src/CombinatorialMathematics/UniqueFullPermutation.cpp)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看