<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                在linux的網絡編程中,很長的時間都在使用select來做事件觸發。在linux新的內核中,有了一種替換它的機制,就是epoll。 相比于select,epoll最大的好處在于它不會隨著監聽fd數目的增長而降低效率。因為在內核中的select實現中,它是采用輪詢來處理的,輪詢的fd數目越多,自然耗時越多。并且,在linux/posix\_types.h頭文件有這樣的聲明: ``` #define __FD_SETSIZE??? 1024 ``` 表示select最多同時監聽1024個fd,當然,可以通過修改頭文件再重編譯內核來擴大這個數目,但這似乎并不治本。 **epoll的接口非常簡單,一共就三個函數** ``` 1. int epoll\_create(int size); ``` 創建一個epoll的句柄,size用來告訴內核這個監聽的數目一共有多大。這個參數不同于select()中的第一個參數,給出最大監聽的fd+1的值。需要注意的是,當創建好epoll句柄后,它就是會占用一個fd值,在linux下如果查看/proc/進程id/fd/,是能夠看到這個fd的,所以在使用完epoll后,必須調用close()關閉,否則可能導致fd被耗盡。 ``` 2 int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); ``` epoll的事件注冊函數,它不同與select()是在監聽事件時告訴內核要監聽什么類型的事件,而是在這里先注冊要監聽的事件類型。第一個參數是epoll\_create()的返回值,第二個參數表示動作,用三個宏來表示: EPOLL\_CTL\_ADD:注冊新的fd到epfd中; EPOLL\_CTL\_MOD:修改已經注冊的fd的監聽事件; EPOLL\_CTL\_DEL:從epfd中刪除一個fd; 第三個參數是需要監聽的fd,第四個參數是告訴內核需要監聽什么事,struct epoll\_event結構如下: ``` struct epoll_event { ? __uint32_t events;? /* Epoll events */ ? epoll\_data_t data;? /* User data variable */ }; ``` **events可以是以下幾個宏的集合: ** EPOLLIN :表示對應的文件描述符可以讀(包括對端SOCKET正常關閉); EPOLLOUT:表示對應的文件描述符可以寫; EPOLLPRI:表示對應的文件描述符有緊急的數據可讀(這里應該表示有帶外數據到來); EPOLLERR:表示對應的文件描述符發生錯誤; EPOLLHUP:表示對應的文件描述符被掛斷; EPOLLET: 將EPOLL設為邊緣觸發(Edge Triggered)模式,這是相對于水平觸發(Level Triggered)來說的。 EPOLLONESHOT:只監聽一次事件,當監聽完這次事件之后,如果還需要繼續監聽這個socket的話,需要再次把這個socket加入到EPOLL隊列里 ``` 3. int epoll\_wait(int epfd, struct epoll_event * events, int maxevents, int timeout); ``` 等待事件的產生,類似于select()調用。參數events用來從內核得到事件的集合,maxevents告之內核這個events有多大,這個maxevents的值不能大于創建epoll\_create()時的size,參數timeout是超時時間(毫秒,0會立即返回,-1將不確定,也有說法說是永久阻塞)。該函數返回需要處理的事件數目,如返回0表示已超時。 ***** **從man手冊中,得到ET和LT的具體描述如下:** **EPOLL事件有兩種模型:** > Edge Triggered (ET) > Level Triggered (LT) ### 假如有這樣一個例子: 1\. 我們已經把一個用來從管道中讀取數據的文件句柄(RFD)添加到epoll描述符 2\. 這個時候從管道的另一端被寫入了2KB的數據 3\. 調用epoll\_wait(2),并且它會返回RFD,說明它已經準備好讀取操作 4\. 然后我們讀取了1KB的數據 5\. 調用epoll\_wait(2)...... ### Edge Triggered 工作模式: 如果我們在第1步將RFD添加到epoll描述符的時候使用了EPOLLET標志,那么在第5步調用epoll\_wait(2)之后將有可能會掛起,因為剩余的數據還存在于文件的輸入緩沖區內,而且數據發出端還在等待一個針對已經發出數據的反饋信息。只有在監視的文件句柄上發生了某個事件的時候 ET 工作模式才會匯報事件。因此在第5步的時候,調用者可能會放棄等待仍在存在于文件輸入緩沖區內的剩余數據。在上面的例子中,會有一個事件產生在RFD句柄上,因為在第2步執行了一個寫操作,然后,事件將會在第3步被銷毀。因為第4步的讀取操作沒有讀空文件輸入緩沖區內的數據,因此我們在第5步調用 epoll\_wait(2)完成后,是否掛起是不確定的。epoll工作在ET模式的時候,必須使用非阻塞套接口,以避免由于一個文件句柄的阻塞讀/阻塞寫操作把處理多個文件描述符的任務餓死。最好以下面的方式調用ET模式的epoll接口,在后面會介紹避免可能的缺陷。 ?? i??? 基于非阻塞文件句柄 ?? ii?? 只有當read(2)或者write(2)返回EAGAIN時才需要掛起,等待。但這并不是說每次read()時都需要循環讀,直到讀到產生一個EAGAIN才認為此次事件處理完成,當read()返回的讀到的數據長度小于請求的數據長度時,就可以確定此時緩沖中已沒有數據了,也就可以認為此事讀事件已處理完成。 ### Level Triggered 工作模式 相反的,以LT方式調用epoll接口的時候,它就相當于一個速度比較快的poll(2),并且無論后面的數據是否被使用,因此他們具有同樣的職能。因為即使使用ET模式的epoll,在收到多個chunk的數據的時候仍然會產生多個事件。調用者可以設定EPOLLONESHOT標志,在 epoll\_wait(2)收到事件后epoll會與事件關聯的文件句柄從epoll描述符中禁止掉。因此當EPOLLONESHOT設定后,使用帶有 EPOLL\_CTL\_MOD標志的epoll\_ctl(2)處理文件句柄就成為調用者必須作的事情。 ## 然后詳細解釋ET, LT: LT(level triggered)是缺省的工作方式,并且同時支持block和no-block socket.在這種做法中,內核告訴你一個文件描述符是否就緒了,然后你可以對這個就緒的fd進行IO操作。如果你不作任何操作,內核還是會繼續通知你的,所以,這種模式編程出錯誤可能性要小一點。傳統的select/poll都是這種模型的代表. ET(edge-triggered)是高速工作方式,只支持no-block socket。在這種模式下,當描述符從未就緒變為就緒時,內核通過epoll告訴你。然后它會假設你知道文件描述符已經就緒,并且不會再為那個文件描述符發送更多的就緒通知,直到你做了某些操作導致那個文件描述符不再為就緒狀態了(比如,你在發送,接收或者接收請求,或者發送接收的數據少于一定量時導致了一個EWOULDBLOCK 錯誤)。但是請注意,如果一直不對這個fd作IO操作(從而導致它再次變成未就緒),內核不會發送更多的通知(only once),不過在TCP協議中,ET模式的加速效用仍需要更多的benchmark確認(這句話不理解)。 在許多測試中我們會看到如果沒有大量的idle -connection或者dead-connection,epoll的效率并不會比select/poll高很多,但是當我們遇到大量的idle- connection(例如WAN環境中存在大量的慢速連接),就會發現epoll的效率大大高于select/poll。(未測試) 另外,當使用epoll的ET模型來工作時,當產生了一個EPOLLIN事件后, 讀數據的時候需要考慮的是當recv()返回的大小如果等于請求的大小,那么很有可能是緩沖區還有數據未讀完,也意味著該次事件還沒有處理完,所以還需要再次讀取: ``` while(rs) { ? buflen = recv(activeevents\[i\].data.fd, buf, sizeof(buf), 0); ? if(buflen < 0) ? { ??? // 由于是非阻塞的模式,所以當errno為EAGAIN時,表示當前緩沖區已無數據可讀 ??? // 在這里就當作是該次事件已處理處. ??? if(errno == EAGAIN) ???? break; ??? else ???? return; ?? } ?? else if(buflen == 0) ?? { ???? // 這里表示對端的socket已正常關閉. ?? } ?? if(buflen == sizeof(buf) ???? rs = 1;?? // 需要再次讀取 ?? else ???? rs = 0; } ``` 還有,假如發送端流量大于接收端的流量(意思是epoll所在的程序讀比轉發的socket要快),由于是非阻塞的socket,那么send()函數雖然返回,但實際緩沖區的數據并未真正發給接收端,這樣不斷的讀和發,當緩沖區滿后會產生EAGAIN錯誤(參考man send),同時,不理會這次請求發送的數據.所以,需要封裝socket\_send()的函數用來處理這種情況,該函數會盡量將數據寫完再返回,返回-1表示出錯。在socket\_send()內部,當寫緩沖已滿(send()返回-1,且errno為EAGAIN),那么會等待后再重試.這種方式并不很完美,在理論上可能會長時間的阻塞在socket\_send()內部,但暫沒有更好的辦法. ``` ssize_t socket_send(int sockfd, const char* buffer, size_t buflen) { ssize_t tmp; size_t total = buflen; const char *p = buffer; while(1) { tmp = send(sockfd, p, total, 0); if(tmp < 0) { // 當send收到信號時,可以繼續寫,但這里返回-1. if(errno == EINTR) return -1; // 當socket是非阻塞時,如返回此錯誤,表示寫緩沖隊列已滿, // 在這里做延時后再重試. if(errno == EAGAIN) { usleep(1000); continue; } return -1; } if((size_t)tmp == total) return buflen; total -= tmp; p += tmp; } return tmp; } ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看