> # 索引類型與方式、聚簇與非聚簇索引
- 索引的概念如同一本字典里的拼音目錄, 我們可以通過拼音目錄快速鎖定漢字的范圍, 同樣的Mysql索引也是為了提高數據的查找效率。對于非常小的表, 全表查詢即可。中型到大型的表適合用索引, 對于特大型的表就需要用到分區技術(千萬級數據)。對于TB級別的表數據, 可以使用分庫分表
- 索引類型: 主鍵索引, 普通索引(單列索引和組合索引),唯一索引, 全文索引, 空間索引
- 索引方式: B+數索引, 哈希索引, 有序數組。
- B+數索引: 每個葉節點到根節點距離相等,適合用來查找范圍內的數據,而且支持數據排序. 在行比較稀疏或者頁分裂導致數據存儲不連續時會導致全表掃描變慢
- B樹的根節點所以和數據, B+數的根節點保存索引, 葉子節點保存數據
- InnoDB存儲引擎會監控對二級索引的查找,會根據訪問的頻率和模式,為熱點頁建立哈希索引,來提高查詢效率
- 哈希索引: 精確查詢不能使用范圍查詢(范圍查詢要掃碼全表), 不支持排序, 由于Hash索引比較的是進行Hash運算之后的Hash值,所以它只能用于等值的過濾, 包括 = , IN(), <=> (嚴格比較兩個NULL值是否相等),Hash索引的查詢效率要遠高于B-Tree索引
- 有序數組: 等值查詢和范圍查詢性能優秀, 插入數據成本高, 需要挪動數據, 適合靜態表存儲
- 數據存儲方式: 聚簇索引,非聚簇索引
- 聚簇索引: 將數據存儲與索引放到了一塊,找到索引也就找到了數據
- Innodb使用的是聚簇索引(主鍵以外的索引都是二級索引)
- 主鍵索引(聚簇索引)是按照每張表的主鍵來構造一顆B+樹(如果沒有主鍵的話, 會找唯一字段代替, 如果也沒有的話會隱式創建一個),根節點是主鍵的值, 葉子節點是表數據
- 在主鍵索引上創建的索引稱為二級索引(輔助索引、非聚簇索引), 也是一個B+數, 只不過葉子節點存放的是主鍵的值
- 非聚簇索引: 索引文件和數據文件是分離的,索引文件僅保存數據記錄的磁盤地址
- 主鍵索引和二級索引都是B+樹, 根節點存放的是索引的值, 葉子節點存放數據的地址
- [聚簇索引和非聚簇索引(通俗易懂 言簡意賅)](https://www.cnblogs.com/jiawen010/p/11805241.html)
- 草稿
- Golang
- 切片 slice
- 數組和切片的區別
- 左閉右開
- make([]int, 5) 和 make([]int, 0, 5) 區別
- 切片非線程安全,并發操作為啥不會像map一樣報錯
- []struct{} 如何遍歷
- 切片如何刪除某個元素
- append 一個nil 切片
- 哈希表 map
- 并發操作
- 并發寫報錯
- 并發讀不會報錯
- 并發讀有寫報錯
- 并發迭代有寫報錯
- 自制并發安全字典
- 官方并發安全字典
- 對未初始化的 map 進行賦值操作
- map的底層
- 無序輸出
- 等量擴容
- 實現集合
- map的key可以使哪些值
- 協程 go
- 協程相關閱讀
- 進程、線程、協程
- 協程 (捕獲異常 和 協程池)
- GPM 模型
- CSP模型
- channel
- channel 相關操作
- 交替打印
- 如何讓channel 只能接收/只能發送
- channel 常見報錯
- channel 死鎖
- nil channel 和 已關閉的 channel
- 使用 select 來多路復用 channel
- channel 的使用
- 接口和結構體
- 簡單使用
- 兩個結構體能否比較
- 工廠模式
- 概念
- 簡單工廠
- 方法工廠
- 堆和棧,值類型和引用類型,內存逃逸,垃圾回收
- 棧和堆
- 內存逃逸
- 值類型和引用類型
- 垃圾回收方式
- 性能優化分析工具 pprof
- golang 代碼片段
- 片段一 defer
- 片段二 channel
- Golang 相關
- Golang 相關閱讀
- Golang 1-10
- make 和 new 的區別
- 使用指針的場景
- Go語言的context包
- 位運算
- Copy 是淺拷貝還是深拷貝
- init 函數 和 sync.Once
- select 多路復用
- Golang 其它
- MongoDB
- 可比較類型 與 可轉json 類型
- Gorm
- 面向對象和面向過程
- go語言實現-面向對象
- go語言實現-面向過程
- 限流,熔斷,降級
- 了解
- 熔斷配置
- 熔斷例子
- 服務降級
- github.com/alibaba/sentinel-golang
- 互斥鎖 讀寫鎖 原子鎖
- 為什么需要鎖
- 互斥鎖
- 讀寫鎖
- 原子鎖
- 互斥鎖性能對比
- 原子鎖性能對比
- 互斥鎖 or 原子鎖?
- 條件鎖
- 計數器
- GoFrame
- GF1.16版本
- 修改使用的表
- 按天、周、月、年
- GoFrame 文檔
- 配置文件
- 生成腳本
- 排序算法
- 相關排序
- 冒泡排序
- 選擇排序
- 插入排序
- 快速排序
- 歸并排序
- 堆排序
- 數據庫
- 分布式怎么保證線程安全
- 數據庫實現方式
- 基于表記錄
- 樂觀鎖
- 悲觀鎖
- Redis實現方式
- Zookeeper實現方式
- Mysql 相關
- group_concat
- 索引優化
- 索引優化1
- 定期分析和優化索引
- 覆蓋索引
- 組合索引
- 聚簇索引和非聚簇索引
- 索引類型與方式、聚簇與非聚簇索引
- 事務特征和隔離級別
- 查詢優化
- mysql自增表插入數據時,Id不連續問題
- InnoDB引擎 和 MyISAM引擎區別
- 鎖
- 悲觀鎖和樂觀鎖
- 查詢,更新,插入語句
- 什么是死鎖
- 怎么處理死鎖
- MySQL 隔離級別
- 事務特征
- 隔離級別
- 廢棄3
- 索引
- 索引類型和方式、聚簇和非聚簇索引(上)
- 索引類型和方式、聚簇和非聚簇索引(下)
- 回表、覆蓋索引、最左前綴、聯合索引、索引下推、索引合并
- Mysql 優化
- 索引的原理
- 千萬級表修改表結構
- Redis
- 獲取隨機三條數據
- Redis 持久化方式
- 全量模式 RDB 冷備份(內存快照)
- 增量模式 AOF 熱備份(文件追加)
- 過期key的刪除策略、內存淘汰機制
- 數據結構
- 位圖
- 網絡
- 網絡相關
- 游戲同步方式:幀同步和狀態同步
- Websocket
- OSI模型
- TCP 與 UDP
- 三次握手四次揮手
- Http 狀態碼
- 1xx(信息性狀態碼)
- 101 服務端代碼
- 101 客戶端代碼
- 2xx(成功狀態碼)
- 3xx(重定向狀態碼)
- 302 服務端代碼
- 302 客戶端代碼
- 4xx(客戶端錯誤狀態碼)
- 5xx(服務器錯誤狀態碼)
- 如何排查接口問題
- 網絡請求和響應過程
- time_wait
- keep-alive
- http 和 rpc 的區別
- I/O多路復用 select和poll
- too many open file
- 其它技術
- git 相關操作
- 修改提交備注
- 多個提交合并成一個提交
- 回退版本
- 小程序和公眾號
- 消息模板
- 獲取code
- 靜默登錄
- 其它技術相關
- C盤空間不足
- 生成式人工智能AIGC
- 共享文件
- 接口文檔, mock提供測試數據
- 抓包工具
- Python
- 安裝包失敗
- 自動化測試 Scrapy
- AIGC:人工智能生成內容
- PHP
- xhprof 性能分析
- 一鍵安裝
- 哈希沖突的解決方式
- 鏈地址法(拉鏈法)
- 開放地址法
- 再哈希
- 概念1
- Nginx
- 負載均衡方式
- 加密解密
- 簡單了解
- 簽名算法例子
- 碼例子1
- 代碼例子2
- Linux
- netstat (用于查看和管理網絡連接和路由表)
- ps 用于查看和管理進程
- ab 壓測
- nohup 守護進程
- lsof (List Open File 獲取被進程打開文件的信息)
- tail 查看日志
- 各類linux同步機制
- Socket 服務端的實現,select 和epoll的區別?
- scp 傳輸,awk 是一個強大的文本分析工具
- pidof
- 項目
- 棋牌
- 牌的編碼
- 出牌規則
- 洗牌
- 股票
- 股票知識
- 龍虎榜數據緩存方式
- 單日龍虎榜數據
- 單只股票的歷史上榜
- 遇到的問題
- 浮點數精度問題
- Mysql Sum 精度問題(float, double精度問題)
- 分頁問題(數據重復)
- 工具包
- v3
- common.go
- common_test.go
- customized.go
- customized_test.go
- slice.go
- slice_test.go
- time.go
- time_test.go
- v4
- common.go
- common_test.go
- customized.go
- customized_test.go
- slice.go
- time.go
- time_test.go
- 相關閱讀
- 協程 goroutine
- 通道 channel
- json 和 gob 序列化和反序列化
- redis 有序集合
- mysql22
- 相關閱讀 s
- pyTorch
- defer
- 內存泄漏
- 數據傳輸
- 雜項
- 一提
- gogogoo
- 內容