我們可以使用while語句重寫countdown函數:
~~~
void countdown (int n) {
while (n > 0) {
cout << n << endl;
n = n-1;
}
cout << "Blastoff!" << endl;
}
~~~
你幾乎可以像閱讀英語一樣閱讀while語句。這段代碼的含義是:當n大于0時,繼續顯示n的值,然后將n減少1;當n變為0時,輸出單詞“Blastoff!”。
while語句執行流程的更正式的描述如下:
1. 對括號內的條件表達式求值,得到true或false;
2. 如果條件為false,退出while語句,繼續執行下一條語句;
3. 如果條件為true,執行花括號里的沒一條語句,然后回到第1步。
這類流程成為循環,因為第3步會回到起點。注意,如果初次進入循環判斷條件為false,循環內的語句將不會執行。循環內的語句成為循環體。
循環體應改變一個或多個變量的值,使循環條件最終能變為false,以結束循環。反之,循環將永遠反復執行,這種情形稱為無限循環。本著娛樂無限的精神,計算機科學家發現下面這個洗發指導步驟是一個無限循環:抹洗發水,清洗,然后重復。
在countdown這個例子中,我們可以證明循環會結束,因為已知n的值是有限的,而且我們看到n在每次循環(迭代)后都會減小,所以最終n的值會變為0。另外一個例子就不好說了:
~~~
void sequence (int n) {
while (n != 1) {
cout << n << endl;
if (n%2 == 0) { // n為偶數
n = n / 2;
} else { // n為奇數
n = n*3 + 1;
}
}
}
~~~
循環條件是n!=1,因而循環將持續下去,知道n變為1,是條件為false。
每一次迭代,程序輸出n的值,然后檢查n是奇數還是偶數;如果是偶數,則n的值要除以2;如果是奇數,則n的值用3n+1取代。舉個例子,如果循環初值(作為參數傳給sequence)為3,結果序列就是3、10、5、16、8、4、2、1。
由于n或增或減,并沒有明顯證據能證明n一定會變到1,或者說程序會結束。對于n的某些特定值,我們可以證明程序會結束。例如,如果初值是2的冪,則n的值每次循環結果都是偶數,最終會變到1。前面的例子,初值是16,程序就在輸出一個序列后結束。
不考慮特定值,我們是否能證明程序對于n的所有值都能結束?這個問題很有趣。到目前為止,沒有人能夠證明之,但也沒有人能推翻之!
- 第1章 編程之路
- 1.1 什么是編程語言
- 1.2 什么是程序
- 1.3 什么是調試
- 1.4 形式語言與自然語言
- 1.5 第一個程序
- 1.6 術語表
- 第2章 變量和類型
- 2.1 更多的輸出
- 2.2 值
- 2.3 變量
- 2.4 賦值
- 2.5 輸出變量
- 2.6 關鍵字
- 2.7 操作符
- 2.8 操作順序
- 2.9 操作符
- 2.10 組合
- 2.11 術語表
- 第3章 函數
- 3.1 浮點數
- 3.2 double到int的轉換
- 3.3 數學函數
- 3.4 函數組合
- 3.5 添加新函數
- 3.6 定義與使用
- 3.7 多函數編程
- 3.8 參數與參數值
- 3.9 參數和變量的局部性
- 3.10 多參函數
- 3.11 有返回值的函數
- 3.12 術語表
- 第4章 條件和遞歸
- 4.1 取模操作符
- 4.2 條件執行
- 4.3 選擇執行
- 4.4 鏈式條件
- 4.5 嵌套條件
- 4.6 return語句
- 4.7 遞歸
- 4.8 無窮遞歸
- 4.9 遞歸函數的棧圖
- 4.10 術語表
- 第5章 有返回值的函數
- 5.1 返回值
- 5.2 程序開發
- 5.3 組合
- 5.4 重載
- 5.5 布爾值
- 5.6 布爾變量
- 5.7 邏輯操作符
- 5.8 布爾函數
- 5.9 從main函數返回
- 5.10 深入遞歸
- 5.11 思路跳躍
- 5.12 又一個例子
- 5.13 術語表
- 第6章 迭代
- 6.1 多次賦值
- 6.2 迭代
- 6.3 while語句
- 6.4 制表
- 6.5 二維表
- 6.6 封裝和泛化
- 6.7 函數
- 6.8 再說封裝
- 6.9 局部變量
- 6.10 再說泛化
- 6.11 術語表
- 第7章 字符串那些事兒
- 7.1 字符串的容器
- 7.2 apstring變量
- 7.3 從字符串中提取字符
- 7.4 字符串長度
- 7.5 遍歷
- 7.6 一個運行時錯誤
- 7.7 find函數
- 7.8 我們自己的find版本
- 7.9 循環與計數
- 7.10 增量與減量操作符
- 7.11 字符串連接
- 7.12 apstring是可變的
- 7.13 apstring是可比較的
- 7.14 字符分類
- 7.15 其他apstring函數
- 7.16 術語表
- 第8章 結構體
- 8.1 復合值
- 8.2 Point對象
- 8.3 訪問實例變量
- 8.4 對結構體的操作
- 8.5 作為參數的結構
- 8.6 傳值調用
- 8.7 傳引用調用
- 8.8 矩形
- 8.9 作為返回值的結構
- 8.10 按引用傳遞其他類型
- 8.11 獲取用戶輸入
- 8.12 術語表
- 第9章 再談結構體
- 9.1 Time結構體
- 9.2 printTime函數
- 9.3 對象函數
- 9.4 純函數
- 9.5 const參數
- 9.6 修改函數
- 9.7 填充函數
- 9.8 哪個最佳?
- 9.9 增量開發vs高屋建瓴
- 9.10 泛化
- 9.11 算法
- 9.12 術語表
- 第10章 向量
- 10.1 元素訪問
- 10.2 向量的復制
- 10.3 for循環
- 10.4 向量的長度
- 10.5 隨機數
- 10.6 統計
- 10.7 隨機數的向量
- 10.8 計數
- 10.9 檢查其他值
- 10.10直方圖
- 10.11一次遍歷的方案
- 10.12隨機種子
- 10.13術語表
- 第11章 成員函數
- 11.1 對象和函數
- 11.2 print
- 11.3 隱式變量訪問
- 11.4 另一個例子
- 11.5 再一個例子
- 11.6 更復雜的例子
- 11.8 初始化還是構造?
- 11.7 構造函數
- 11.9 最后一個例子
- 11.10 頭文件
- 11.11 術語表
- 第12章 對象的向量
- 12.1 組合
- 12.2 紙牌對象(Card)
- 12.3 printCard函數
- 12.4 equals函數
- 12.5 isGreater函數
- 12.6 紙牌的向量
- 12.7 printDeck函數
- 12.8 查找
- 12.9 二分查找
- 12.10 牌堆與子牌堆
- 12.11 術語表
- 第13章 基于向量的對象
- 13.1 枚舉類型
- 13.2 switch語句
- 13.3 牌堆
- 13.4 另一個構造函數
- 13.5 Deck成員函數
- 13.6 洗牌
- 13.7 排序
- 13.8 子牌堆
- 13.9 洗牌與發牌
- 13.10 歸并排序
- 13.11 術語表
- 第14章 類與不變式
- 14.1 私有數據和私有類
- 14.2 什么是類?
- 14.3 復數
- 14.4 訪問函數(Accessor functions)
- 14.5 輸出
- 14.6 復數相關函數(一)
- 14.7 復數相關函數(二)
- 14.8 不變式
- 14.9 先決條件
- 14.10 私有函數
- 14.11 術語表
- 第15章 文件輸入/輸出與apmatrix類
- 15.1 流
- 15.2 文件輸入
- 15.3 文件輸出
- 15.4 解析輸入
- 15.5 解析數字
- 15.6 集合數據結構Set
- 15.7 apmatrix類
- 15.8 距離矩陣
- 15.9 一個更合理的距離矩陣
- 15.10 術語表