[TOC]
# 配置優化
## zookeeper.session.timeout
默認值:3分鐘(180000ms)
說明:RegionServer與Zookeeper間的連接超時時間。當超時時間到后,ReigonServer會被Zookeeper從RS集群清單中移除,HMaster收到移除通知后,會對這臺server負責的regions重新balance,讓其他存活的RegionServer接管.
調優:
這個timeout決定了RegionServer是否能夠及時的failover。設置成1分鐘或更低,可以減少因等待超時而被延長的failover時間。
不過需要注意的是,對于一些Online應用,RegionServer從宕機到恢復時間本身就很短的(網絡閃斷,crash等故障,運維可快速介入),如果調低timeout時間,反而會得不償失。因為當ReigonServer被正式從RS集群中移除時,HMaster就開始做balance了(讓其他RS根據故障機器記錄的WAL日志進行恢復)。當故障的RS在人工介入恢復后,這個balance動作是毫無意義的,反而會使負載不均勻,給RS帶來更多負擔。特別是那些固定分配regions的場景。
## hbase.regionserver.handler.count
默認值:10
說明:RegionServer的請求處理IO線程數。
調優:
這個參數的調優與內存息息相關。
較少的IO線程,適用于處理單次請求內存消耗較高的Big PUT場景(大容量單次PUT或設置了較大cache的scan,均屬于Big PUT)或ReigonServer的內存比較緊張的場景。
較多的IO線程,適用于單次請求內存消耗低,TPS要求非常高的場景。設置該值的時候,以監控內存為主要參考。
這里需要注意的是如果server的region數量很少,大量的請求都落在一個region上,因快速充滿memstore觸發flush導致的讀寫鎖會影響全局TPS,不是IO線程數越高越好。
壓測時,開啟Enabling RPC-level logging,可以同時監控每次請求的內存消耗和GC的狀況,最后通過多次壓測結果來合理調節IO線程數。
## hbase.hregion.max.filesize
默認值:256M
說明:在當前ReigonServer上單個Reigon的最大存儲空間,單個Region超過該值時,這個Region會被自動split成更小的region。
調優:
小region對split和compaction友好,因為拆分region或compact小region里的storefile速度很快,內存占用低。缺點是split和compaction會很頻繁。
特別是數量較多的小region不停地split, compaction,會導致集群響應時間波動很大,region數量太多不僅給管理上帶來麻煩,甚至會引發一些Hbase的bug。
一般512以下的都算小region。
大region,則不太適合經常split和compaction,因為做一次compact和split會產生較長時間的停頓,對應用的讀寫性能沖擊非常大。此外,大region意味著較大的storefile,compaction時對內存也是一個挑戰。
當然,大region也有其用武之地。如果你的應用場景中,某個時間點的訪問量較低,那么在此時做compact和split,既能順利完成split和compaction,又能保證絕大多數時間平穩的讀寫性能。
既然split和compaction如此影響性能,有沒有辦法去掉?
compaction是無法避免的,split倒是可以從自動調整為手動。
只要通過將這個參數值調大到某個很難達到的值,比如100G,就可以間接禁用自動split(RegionServer不會對未到達100G的region做split)。
再配合RegionSplitter這個工具,在需要split時,手動split。
手動split在靈活性和穩定性上比起自動split要高很多,相反,管理成本增加不多,比較推薦online實時系統使用。
內存方面,小region在設置memstore的大小值上比較靈活,大region則過大過小都不行,過大會導致flush時app的IO wait增高,過小則因store file過多影響讀性能。
## hbase.regionserver.global.memstore.upperLimit/lowerLimit
默認值:0.4/0.35
upperlimit說明:hbase.hregion.memstore.flush.size
這個參數的作用是當單個Region內所有的memstore大小總和超過指定值時,flush該region的所有memstore。RegionServer的flush是通過將請求添加一個隊列,模擬生產消費模式來異步處理的。那這里就有一個問題,當隊列來不及消費,產生大量積壓請求時,可能會導致內存陡增,最壞的情況是觸發OOM。
這個參數的作用是防止內存占用過大,當ReigonServer內所有region的memstores所占用內存總和達到heap的40%時,HBase會強制block所有的更新并flush這些region以釋放所有memstore占用的內存。
lowerLimit說明: 同upperLimit,只不過lowerLimit在所有region的memstores所占用內存達到Heap的35%時,不flush所有的memstore。
它會找一個memstore內存占用最大的region,做個別flush,此時寫更新還是會被block。lowerLimit算是一個在所有region強制flush導致性能降低前的補救措施。在日志中,表現為 “** Flush thread woke up with memory above low water.”
調優:這是一個Heap內存保護參數,默認值已經能適用大多數場景。?參數調整會影響讀寫,如果寫的壓力大導致經常超過這個閥值,則調小讀緩存hfile.block.cache.size增大該閥值,或者Heap余量較多時,不修改讀緩存大小。
如果在高壓情況下,也沒超過這個閥值,那么建議你適當調小這個閥值再做壓測,確保觸發次數不要太多,然后還有較多Heap余量的時候,調大hfile.block.cache.size提高讀性能。
還有一種可能性是?hbase.hregion.memstore.flush.size保持不變,但RS維護了過多的region,要知道 region數量直接影響占用內存的大小。
## hfile.block.cache.size
默認值:0.2
說明:storefile的讀緩存占用Heap的大小百分比,0.2表示20%。該值直接影響數據讀的性能。?調優:當然是越大越好,如果寫比讀少很多,開到0.4-0.5也沒問題。如果讀寫較均衡,0.3左右。如果寫比讀多,果斷默認吧。設置這個值的時候,你同時要參考?hbase.regionserver.global.memstore.upperLimit?,該值是memstore占heap的最大百分比,兩個參數一個影響讀,一個影響寫。如果兩值加起來超過80-90%,會有OOM的風險,謹慎設置。
hbase.hstore.blockingStoreFiles
默認值:7
說明:在flush時,當一個region中的Store(Coulmn Family)內有超過7個storefile時,則block所有的寫請求進行compaction,以減少storefile數量。
調優:block寫請求會嚴重影響當前regionServer的響應時間,但過多的storefile也會影響讀性能。從實際應用來看,為了獲取較平滑的響應時間,可將值設為無限大。如果能容忍響應時間出現較大的波峰波谷,那么默認或根據自身場景調整即可。
## hbase.hregion.memstore.block.multiplier
默認值:2
說明:當一個region里的memstore占用內存大小超過hbase.hregion.memstore.flush.size兩倍的大小時,block該region的所有請求,進行flush,釋放內存。
雖然我們設置了region所占用的memstores總內存大小,比如64M,但想象一下,在最后63.9M的時候,我Put了一個200M的數據,此時memstore的大小會瞬間暴漲到超過預期的hbase.hregion.memstore.flush.size的幾倍。這個參數的作用是當memstore的大小增至超過hbase.hregion.memstore.flush.size 2倍時,block所有請求,遏制風險進一步擴大。
調優: 這個參數的默認值還是比較靠譜的。如果你預估你的正常應用場景(不包括異常)不會出現突發寫或寫的量可控,那么保持默認值即可。如果正常情況下,你的寫請求量就會經常暴長到正常的幾倍,那么你應該調大這個倍數并調整其他參數值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以預留更多內存,防止HBase server OOM。
## hbase.hregion.memstore.mslab.enabled
默認值:true
說明:減少因內存碎片導致的Full GC,提高整體性能。
調優:詳見?http://kenwublog.com/avoid-full-gc-in-hbase-using-arena-allocation
# 其他
## 啟用LZO壓縮
LZO對比Hbase默認的GZip,前者性能較高,后者壓縮比較高,具體參見?Using LZO Compression?。對于想提高HBase讀寫性能的開發者,采用LZO是比較好的選擇。對于非常在乎存儲空間的開發者,則建議保持默認。
## 不要在一張表里定義太多的Column Family
Hbase目前不能良好的處理超過包含2-3個CF的表。
**因為某個CF在flush發生時,它鄰近的CF也會因關聯效應被觸發flush,最終導致系統產生更多IO**
## 批量導入
在批量導入數據到Hbase前,你可以通過預先創建regions,來平衡數據的負載。
## 避免CMS concurrent mode failure
HBase使用CMS GC。默認觸發GC的時機是當年老代內存達到90%的時候,這個百分比由 -XX:CMSInitiatingOccupancyFraction=N 這個參數來設置。concurrent mode failed發生在這樣一個場景:
當年老代內存達到90%的時候,CMS開始進行并發垃圾收集,于此同時,新生代還在迅速不斷地晉升對象到年老代。當年老代CMS還未完成并發標記時,年老代滿了,悲劇就發生了。CMS因為沒內存可用不得不暫停mark,并觸發一次stop the world(掛起所有jvm線程),然后采用單線程拷貝方式清理所有垃圾對象。這個過程會非常漫長。為了避免出現concurrent mode failed,建議讓GC在未到90%時,就觸發。
通過設置`?-XX:CMSInitiatingOccupancyFraction=N`
這個百分比, 可以簡單的這么計算。如果你的?hfile.block.cache.size 和?hbase.regionserver.global.memstore.upperLimit 加起來有60%(默認),那么你可以設置 70-80,一般高10%左右差不多。
# Hbase客戶端優化
## AutoFlush
將HTable的setAutoFlush設為false,可以支持客戶端批量更新。即當Put填滿客戶端flush緩存時,才發送到服務端。
默認是true。
## Scan Caching
scanner一次緩存多少數據來scan(從服務端一次抓多少數據回來scan)
默認值是 1,一次只取一條。
## Scan Attribute Selection
scan時建議指定需要的Column Family,減少通信量,否則scan操作默認會返回整個row的所有數據(所有Coulmn Family)。
## Close ResultScanners
通過scan取完數據后,記得要關閉ResultScanner,否則RegionServer可能會出現問題(對應的Server資源無法釋放)。
## Optimal Loading of Row Keys
當你scan一張表的時候,返回結果只需要row key(不需要CF, qualifier,values,timestaps)時,你可以在scan實例中添加一個filterList,并設置 MUST_PASS_ALL操作,filterList中add?FirstKeyOnlyFilter或KeyOnlyFilter。這樣可以減少網絡通信量。
## Turn off WAL on Puts
當Put某些非重要數據時,你可以設置writeToWAL(false),來進一步提高寫性能。writeToWAL(false)會在Put時放棄寫WAL log。風險是,當RegionServer宕機時,可能你剛才Put的那些數據會丟失,且無法恢復。
## 啟用Bloom Filter
Bloom Filter通過空間換時間,提高讀操作性能
# 總結
## hbase.hregion.max.filesize應該設置多少合適
默認值:256M
說明:Maximum HStoreFile size. If any one of a column families' HStoreFiles has?grown to exceed this value, the hosting HRegion is split in two.
HStoreFile的最大值。如果任何一個Column Family(或者說HStore)的HStoreFiles的大小超過這個值,那么,其所屬的HRegion就會Split成兩個。
調優:
hbase中hfile的默認最大值(hbase.hregion.max.filesize)是256MB,而google的bigtable論文中對tablet的最大值也推薦為100-200MB,這個大小有什么秘密呢?
眾所周知hbase中數據一開始會寫入memstore,當memstore滿64MB以后,會flush到disk上而成為storefile。當storefile數量超過3時,會啟動compaction過程將它們合并為一個storefile。這個過程中會刪除一些timestamp過期的數據,比如update的數據。而當合并后的storefile大小大于hfile默認最大值時,會觸發split動作,將它切分成兩個region。
lz進行了持續insert壓力測試,并設置了不同的hbase.hregion.max.filesize,根據結果得到如下結論:值越小,平均吞吐量越大,但吞吐量越不穩定;值越大,平均吞吐量越小,吞吐量不穩定的時間相對更小。
為什么會這樣呢?推論如下:
?? ?a 當hbase.hregion.max.filesize比較小時,觸發split的機率更大,而split的時候會將region offline,因此在split結束的時間前,訪問該region的請求將被block住,客戶端自我block的時間默認為1s。當大量的region同時發生split時,系統的整體訪問服務將大受影響。因此容易出現吞吐量及響應時間的不穩定現象
b 當hbase.hregion.max.filesize比較大時,單個region中觸發split的機率較小,大量region同時觸發split的機率也較小,因此吞吐量較之小hfile尺寸更加穩定些。但是由于長期得不到split,因此同一個region內發生多次compaction的機會增加了。compaction的原理是將原有數據讀一遍并重寫一遍到hdfs上,然后再刪除原有數據。無疑這種行為會降低以io為瓶頸的系統的速度,因此平均吞吐量會受到一些影響而下降。
綜合以上兩種情況,hbase.hregion.max.filesize不宜過大或過小,256MB或許是一個更理想的經驗參數。對于離線型的應用,調整為128MB會更加合適一些,而在線應用除非對split機制進行改造,否則不應該低于256MB
## autoflush=false的影響
無論是官方還是很多blog都提倡為了提高hbase的寫入速度而在應用代碼中設置autoflush=false,然后lz認為在在線應用中應該謹慎進行該設置。原因如下:
a autoflush=false的原理是當客戶端提交delete或put請求時,將該請求在客戶端緩存,直到數據超過2M(hbase.client.write.buffer決定)或用戶執行了hbase.flushcommits()時才向regionserver提交請求。因此即使htable.put()執行返回成功,也并非說明請求真的成功了。假如還沒有達到該緩存而client崩潰,該部分數據將由于未發送到regionserver而丟失。這對于零容忍的在線服務是不可接受的。
b autoflush=true雖然會讓寫入速度下降2-3倍,但是對于很多在線應用來說這都是必須打開的,也正是hbase為什么讓它默認值為true的原因。當該值為true時,每次請求都會發往regionserver,而regionserver接收到請求后第一件事就是寫hlog,因此對io的要求是非常高的,為了提高hbase的寫入速度,應該盡可能高地提高io吞吐量,比如增加磁盤、使用raid卡、減少replication因子數等
## 從性能的角度談table中family和qualifier的設置
對于傳統關系型數據庫中的一張table,在業務轉換到hbase上建模時,從性能的角度應該如何設置family和qualifier呢?
最極端的,①每一列都設置成一個family,②一個表僅有一個family,所有列都是其中的一個qualifier,那么有什么區別呢?
從讀的方面考慮:
family越多,那么獲取每一個cell數據的優勢越明顯,因為io和網絡都減少了。
如果只有一個family,那么每一次讀都會讀取當前rowkey的所有數據,網絡和io上會有一些損失。
當然如果要獲取的是固定的幾列數據,那么把這幾列寫到一個family中比分別設置family要更好,因為只需一次請求就能拿回所有數據。
從寫的角度考慮:
首先,內存方面來說,對于一個Region,會為每一個表的每一個Family分配一個Store,而每一個Store,都會分配一個MemStore,所以更多的family會消耗更多的內存。
其次,從flush和compaction方面說,目前版本的hbase,在flush和compaction都是以region為單位的,也就是說當一個family達到flush條件時,該region的所有family所屬的memstore都會flush一次,即使memstore中只有很少的數據也會觸發flush而生成小文件。這樣就增加了compaction發生的機率,而compaction也是以region為單位的,這樣就很容易發生compaction風暴從而降低系統的整體吞吐量。
第三,從split方面考慮,由于hfile是以family為單位的,因此對于多個family來說,數據被分散到了更多的hfile中,減小了split發生的機率。這是把雙刃劍。更少的split會導致該region的體積比較大,由于balance是以region的數目而不是大小為單位來進行的,因此可能會導致balance失效。而從好的方面來說,更少的split會讓系統提供更加穩定的在線服務。而壞處我們可以通過在請求的低谷時間進行人工的split和balance來避免掉。
因此對于寫比較多的系統,如果是離線應該,我們盡量只用一個family好了,但如果是在線應用,那還是應該根據應用的情況合理地分配family。
## hbase.regionserver.handler.count
?RegionServer端開啟的RPC監聽器實例個數,也即RegionServer能夠處理的IO請求線程數。默認是10.
?此參數與內存息息相關。該值設置的時候,以監控內存為主要參考。
?對于?單次請求內存消耗較高的Big PUT場景(大容量單次PUT或設置了較大cache的scan,均屬于Big PUT)或ReigonServer的內存比較緊張的場景,可以設置的相對較小。
?對于?單次請求內存消耗低,TPS(TransactionPerSecond,每秒事務處理量)要求非常高的場景,可以設置的相對大些。
- 基礎
- 編譯和安裝
- classpath到底是什么?
- 編譯運行
- 安裝
- sdkman多版本
- jabba多版本
- java字節碼查看
- 數據類型
- 簡介
- 整形
- char和int
- 變量和常量
- 大數值運算
- 基本類型包裝類
- Math類
- 內存劃分
- 位運算符
- 方法相關
- 方法重載
- 可變參數
- 方法引用
- 面向對象
- 定義
- 繼承和覆蓋
- 接口和抽象類
- 接口定義增強
- 內建函數式接口
- 多態
- 泛型
- final和static
- 內部類
- 包
- 修飾符
- 異常
- 枚舉類
- 代碼塊
- 對象克隆
- BeanUtils
- java基礎類
- scanner類
- Random類
- System類
- Runtime類
- Comparable接口
- Comparator接口
- MessageFormat類
- NumberFormat
- 數組相關
- 數組
- Arrays
- string相關
- String
- StringBuffer
- StringBuilder
- 正則
- 日期類
- Locale類
- Date
- DateFormat
- SimpleDateFormat
- Calendar
- 新時間日期API
- 簡介
- LocalDate,LocalTime,LocalDateTime
- Instant時間點
- 帶時區的日期,時間處理
- 時間間隔
- 日期時間校正器
- TimeUnit
- 用yyyy
- 集合
- 集合和迭代器
- ArrayList集合
- List
- Set
- 判斷集合唯一
- Map和Entry
- stack類
- Collections集合工具類
- Stream數據流
- foreach不能修改內部元素
- of方法
- IO
- File類
- 字節流stream
- 字符流Reader
- IO流分類
- 轉換流
- 緩沖流
- 流的操作規律
- properties
- 序列化流與反序列化流
- 打印流
- System類對IO支持
- commons-IO
- IO流總結
- NIO
- 異步與非阻塞
- IO通信
- Unix的IO模型
- epoll對于文件描述符操作模式
- 用戶空間和內核空間
- NIO與普通IO的主要區別
- Paths,Path,Files
- Buffer
- Channel
- Selector
- Pipe
- Charset
- NIO代碼
- 多線程
- 創建線程
- 線程常用方法
- 線程池相關
- 線程池概念
- ThreadPoolExecutor
- Runnable和Callable
- 常用的幾種線程池
- 線程安全
- 線程同步的幾種方法
- synchronized
- 死鎖
- lock接口
- ThreadLoad
- ReentrantLock
- 讀寫鎖
- 鎖的相關概念
- volatile
- 釋放鎖和不釋放鎖的操作
- 等待喚醒機制
- 線程狀態
- 守護線程和普通線程
- Lamda表達式
- 反射相關
- 類加載器
- 反射
- 注解
- junit注解
- 動態代理
- 網絡編程相關
- 簡介
- UDP
- TCP
- 多線程socket上傳圖片
- NIO
- JDBC相關
- JDBC
- 預處理
- 批處理
- 事務
- properties配置文件
- DBUtils
- DBCP連接池
- C3P0連接池
- 獲得MySQL自動生成的主鍵
- Optional類
- Jigsaw模塊化
- 日志相關
- JDK日志
- log4j
- logback
- xml
- tomcat
- maven
- 簡介
- 倉庫
- 目錄結構
- 常用命令
- 生命周期
- idea配置
- jar包沖突
- 依賴范圍
- 私服
- 插件
- git-commit-id-plugin
- maven-assembly-plugin
- maven-resources-plugin
- maven-compiler-plugin
- versions-maven-plugin
- maven-source-plugin
- tomcat-maven-plugin
- 多環境
- 自定義插件
- stream
- swing
- json
- jackson
- optional
- junit
- gradle
- servlet
- 配置
- ServletContext
- 生命周期
- HttpServlet
- request
- response
- 亂碼
- session和cookie
- cookie
- session
- jsp
- 簡介
- 注釋
- 方法,成員變量
- 指令
- 動作標簽
- 隱式對象
- EL
- JSTL
- javaBean
- listener監聽器
- Filter過濾器
- 圖片驗證碼
- HttpUrlConnection
- 國際化
- 文件上傳
- 文件下載
- spring
- 簡介
- Bean
- 獲取和實例化
- 屬性注入
- 自動裝配
- 繼承和依賴
- 作用域
- 使用外部屬性文件
- spel
- 前后置處理器
- 生命周期
- 掃描規則
- 整合多個配置文件
- 注解
- 簡介
- 注解分層
- 類注入
- 分層和作用域
- 初始化方法和銷毀方法
- 屬性
- 泛型注入
- Configuration配置文件
- aop
- aop的實現
- 動態代理實現
- cglib代理實現
- aop名詞
- 簡介
- aop-xml
- aop-注解
- 代理方式選擇
- jdbc
- 簡介
- JDBCTemplate
- 事務
- 整合
- junit整合
- hibernate
- 簡介
- hibernate.properties
- 實體對象三種狀態
- 檢索方式
- 簡介
- 導航對象圖檢索
- OID檢索
- HQL
- Criteria(QBC)
- Query
- 緩存
- 事務管理
- 關系映射
- 注解
- 優化
- MyBatis
- 簡介
- 入門程序
- Mapper動態代理開發
- 原始Dao開發
- Mapper接口開發
- SqlMapConfig.xml
- map映射文件
- 輸出返回map
- 輸入參數
- pojo包裝類
- 多個輸入參數
- resultMap
- 動態sql
- 關聯
- 一對一
- 一對多
- 多對多
- 整合spring
- CURD
- 占位符和sql拼接以及參數處理
- 緩存
- 延遲加載
- 注解開發
- springMVC
- 簡介
- RequestMapping
- 參數綁定
- 常用注解
- 響應
- 文件上傳
- 異常處理
- 攔截器
- springBoot
- 配置
- 熱更新
- java配置
- springboot配置
- yaml語法
- 運行
- Actuator 監控
- 多環境配置切換
- 日志
- 日志簡介
- logback和access
- 日志文件配置屬性
- 開機自啟
- aop
- 整合
- 整合Redis
- 整合Spring Data JPA
- 基本查詢
- 復雜查詢
- 多數據源的支持
- Repository分析
- JpaSpeci?cationExecutor
- 整合Junit
- 整合mybatis
- 常用注解
- 基本操作
- 通用mapper
- 動態sql
- 關聯映射
- 使用xml
- spring容器
- 整合druid
- 整合郵件
- 整合fastjson
- 整合swagger
- 整合JDBC
- 整合spingboot-cache
- 請求
- restful
- 攔截器
- 常用注解
- 參數校驗
- 自定義filter
- websocket
- 響應
- 異常錯誤處理
- 文件下載
- 常用注解
- 頁面
- Thymeleaf組件
- 基本對象
- 內嵌對象
- 上傳文件
- 單元測試
- 模擬請求測試
- 集成測試
- 源碼解析
- 自動配置原理
- 啟動流程分析
- 源碼相關鏈接
- Servlet,Filter,Listener
- springcloud
- 配置
- 父pom
- 創建子工程
- Eureka
- Hystrix
- Ribbon
- Feign
- Zuul
- kotlin
- 基本數據類型
- 函數
- 區間
- 區塊鏈
- 簡介
- linux
- ulimit修改
- 防止syn攻擊
- centos7部署bbr
- debain9開啟bbr
- mysql
- 隔離性
- sql執行加載順序
- 7種join
- explain
- 索引失效和優化
- 表連接優化
- orderby的filesort問題
- 慢查詢
- show profile
- 全局查詢日志
- 死鎖解決
- sql
- 主從
- IDEA
- mac快捷鍵
- 美化界面
- 斷點調試
- 重構
- springboot-devtools熱部署
- IDEA進行JAR打包
- 導入jar包
- ProjectStructure
- toString添加json模板
- 配置maven
- Lombok插件
- rest client
- 文檔顯示
- sftp文件同步
- 書簽
- 代碼查看和搜索
- postfix
- live template
- git
- 文件頭注釋
- JRebel
- 離線模式
- xRebel
- github
- 連接mysql
- 選項沒有Java class的解決方法
- 擴展
- 項目配置和web部署
- 前端開發
- json和Inject language
- idea內存和cpu變高
- 相關設置
- 設計模式
- 單例模式
- 簡介
- 責任鏈
- JUC
- 原子類
- 原子類簡介
- 基本類型原子類
- 數組類型原子類
- 引用類型原子類
- JVM
- JVM規范內存解析
- 對象的創建和結構
- 垃圾回收
- 內存分配策略
- 備注
- 虛擬機工具
- 內存模型
- 同步八種操作
- 內存區域大小參數設置
- happens-before
- web service
- tomcat
- HTTPS
- nginx
- 變量
- 運算符
- 模塊
- Rewrite規則
- Netty
- netty為什么沒用AIO
- 基本組件
- 源碼解讀
- 簡單的socket例子
- 準備netty
- netty服務端啟動
- 案例一:發送字符串
- 案例二:發送對象
- websocket
- ActiveMQ
- JMS
- 安裝
- 生產者-消費者代碼
- 整合springboot
- kafka
- 簡介
- 安裝
- 圖形化界面
- 生產過程分析
- 保存消息分析
- 消費過程分析
- 命令行
- 生產者
- 消費者
- 攔截器interceptor
- partition
- kafka為什么快
- kafka streams
- kafka與flume整合
- RabbitMQ
- AMQP
- 整體架構
- RabbitMQ安裝
- rpm方式安裝
- 命令行和管控頁面
- 消息生產與消費
- 整合springboot
- 依賴和配置
- 簡單測試
- 多方測試
- 對象支持
- Topic Exchange模式
- Fanout Exchange訂閱
- 消息確認
- java client
- RabbitAdmin和RabbitTemplate
- 兩者簡介
- RabbitmqAdmin
- RabbitTemplate
- SimpleMessageListenerContainer
- MessageListenerAdapter
- MessageConverter
- 詳解
- Jackson2JsonMessageConverter
- ContentTypeDelegatingMessageConverter
- lucene
- 簡介
- 入門程序
- luke查看索引
- 分析器
- 索引庫維護
- elasticsearch
- 配置
- 插件
- head插件
- ik分詞插件
- 常用術語
- Mapping映射
- 數據類型
- 屬性方法
- Dynamic Mapping
- Index Template 索引模板
- 管理映射
- 建立映射
- 索引操作
- 單模式下CURD
- mget多個文檔
- 批量操作
- 版本控制
- 基本查詢
- Filter過濾
- 組合查詢
- 分析器
- redis
- String
- list
- hash
- set
- sortedset
- 發布訂閱
- 事務
- 連接池
- 管道
- 分布式可重入鎖
- 配置文件翻譯
- 持久化
- RDB
- AOF
- 總結
- Lettuce
- zookeeper
- zookeeper簡介
- 集群部署
- Observer模式
- 核心工作機制
- zk命令行操作
- zk客戶端API
- 感知服務動態上下線
- 分布式共享鎖
- 原理
- zab協議
- 兩階段提交協議
- 三階段提交協議
- Paxos協議
- ZAB協議
- hadoop
- 簡介
- hadoop安裝
- 集群安裝
- 單機安裝
- linux編譯hadoop
- 添加新節點
- 退役舊節點
- 集群間數據拷貝
- 歸檔
- 快照管理
- 回收站
- 檢查hdfs健康狀態
- 安全模式
- hdfs簡介
- hdfs命令行操作
- 常見問題匯總
- hdfs客戶端操作
- mapreduce工作機制
- 案例-單詞統計
- 局部聚合Combiner
- combiner流程
- combiner案例
- 自定義排序
- 自定義Bean對象
- 排序的分類
- 案例-按總量排序需求
- 一次性完成統計和排序
- 分區
- 分區簡介
- 案例-結果分區
- 多表合并
- reducer端合并
- map端合并(分布式緩存)
- 分組
- groupingComparator
- 案例-求topN
- 全局計數器
- 合并小文件
- 小文件的弊端
- CombineTextInputFormat機制
- 自定義InputFormat
- 自定義outputFormat
- 多job串聯
- 倒排索引
- 共同好友
- 串聯
- 數據壓縮
- InputFormat接口實現類
- yarn簡介
- 推測執行算法
- 本地提交到yarn
- 框架運算全流程
- 數據傾斜問題
- mapreduce的優化方案
- HA機制
- 優化
- Hive
- 安裝
- shell參數
- 數據類型
- 集合類型
- 數據庫
- DDL操作
- 創建表
- 修改表
- 分區表
- 分桶表
- DML操作
- load
- insert
- select
- export,import
- Truncate
- 注意
- 嚴格模式
- 函數
- 內置運算符
- 內置函數
- 自定義函數
- Transfrom實現
- having和where不同
- 壓縮
- 存儲
- 存儲和壓縮結合使用
- explain詳解
- 調優
- Fetch抓取
- 本地模式
- 表的優化
- GroupBy
- count(Distinct)去重統計
- 行列過濾
- 動態分區調整
- 數據傾斜
- 并行執行
- JVM重用
- 推測執行
- reduce內存和個數
- sql查詢結果作為變量(shell)
- youtube
- flume
- 簡介
- 安裝
- 常用組件
- 攔截器
- 案例
- 監聽端口到控制臺
- 采集目錄到HDFS
- 采集文件到HDFS
- 多個agent串聯
- 日志采集和匯總
- 單flume多channel,sink
- 自定義攔截器
- 高可用配置
- 使用注意
- 監控Ganglia
- sqoop
- 安裝
- 常用命令
- 數據導入
- 準備數據
- 導入數據到HDFS
- 導入關系表到HIVE
- 導入表數據子集
- 增量導入
- 數據導出
- 打包腳本
- 作業
- 原理
- azkaban
- 簡介
- 安裝
- 案例
- 簡介
- command類型單一job
- command類型多job工作流flow
- HDFS操作任務
- mapreduce任務
- hive腳本任務
- oozie
- 安裝
- hbase
- 簡介
- 系統架構
- 物理存儲
- 尋址機制
- 讀寫過程
- 安裝
- 命令行
- 基本CURD
- java api
- CURD
- CAS
- 過濾器查詢
- 建表高級屬性
- 與mapreduce結合
- 與sqoop結合
- 協處理器
- 參數配置優化
- 數據備份和恢復
- 節點管理
- 案例-點擊流
- 簡介
- HUE
- 安裝
- storm
- 簡介
- 安裝
- 集群啟動及任務過程分析
- 單詞統計
- 單詞統計(接入kafka)
- 并行度和分組
- 啟動流程分析
- ACK容錯機制
- ACK簡介
- BaseRichBolt簡單使用
- BaseBasicBolt簡單使用
- Ack工作機制
- 本地目錄樹
- zookeeper目錄樹
- 通信機制
- 案例
- 日志告警
- 工具
- YAPI
- chrome無法手動拖動安裝插件
- 時間和空間復雜度
- jenkins
- 定位cpu 100%
- 常用腳本工具
- OOM問題定位
- scala
- 編譯
- 基本語法
- 函數
- 數組常用方法
- 集合
- 并行集合
- 類
- 模式匹配
- 異常
- tuple元祖
- actor并發編程
- 柯里化
- 隱式轉換
- 泛型
- 迭代器
- 流stream
- 視圖view
- 控制抽象
- 注解
- spark
- 企業架構
- 安裝
- api開發
- mycat
- Groovy
- 基礎