[TOC]
# 簡介
在指定的時間間隔內將內存中的數據集快照寫入磁盤,也就是快照,它恢復時是將快照文件直接讀到內存里,Redis會單獨創建(fork)一個子進程來進行持久化。
一個臨時文件中,待持久化過程都結束了,再用這個臨時文件替換上次持久化好的文件。整個過程中,主進程是不進行任何IO操作的,這就確保了極高的性能。如果需要進行大規模數據的恢復,且對于數據恢復的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。
**RDB的缺點是最后一次持久化后的數據可能丟失。**
備注解釋:
--fork的作用是復制一個與當前進程一樣的進程。新進程的所有數據(變量、環境變量、程序計數器等)數值都和原進程一致,但是是一個全新的進程,并作為原進程的子進程
# 如何觸發RDB快照
配置文件中默認的快照配置
~~~
save 900 1 #刷新快照到硬盤中,必須滿足兩者要求才會觸發,即900秒之后至少1個關鍵字發生變化。
save 300 10 #必須是300秒之后至少10個關鍵字發生變化。
save 60 10000 #必須是60秒之后至少10000個關鍵字發生變化。(以上3個選項都屏蔽,則rdb禁用)
~~~
~~~
stop-writes-on-bgsave-error yes #后臺存儲錯誤停止寫。
rdbcompression yes #使用LZF壓縮rdb文件。
rdbchecksum yes #存儲和加載rdb文件時校驗。
dbfilename dump.rdb #設置rdb文件名。
dir ./ #設置工作目錄,rdb文件會寫入該目錄。
~~~
**命令save或者是bgsave**
* save:save時只管保存,其它不管,全部阻塞
* bgsave:Redis會在后臺異步進行快照操作,快照同時還可以響應客戶端請求。非阻塞,內存會增加.可以通過lastsave命令獲取最后一次成功執行快照的時間
執行redis的bgsave命令時,redis會fork一個進程把redis中的內存數據寫入磁盤。這樣的好處是,copy on write,有效的節省了內存占用。但是,bgsave時,如果有數據變更,一樣需要申請內存
注:執行flushall命令,也會產生dump.rdb文件,但里面是空的,無意義
默認RDB方式保存的是dump.rdb文件,恢復也是識別的是dump.rdb
# 配置位置,快照恢復
查看目錄
CONFIG GET dir獲取目錄
**將備份文件 (dump.rdb) 移動到 redis 安裝目錄并啟動服務即可 或者就在當前目錄啟動**
舉例:
我的redis啟動服務的目錄是 /usr/local/bin 下面
我啟動redis的目錄是/root 下面,然后生成的的dump.rdb 文件也是在/root 目錄下,假如redis服務器出現問題,掛掉了。那么想要根據rdb恢復數據
(1)將備份文件 (dump.rdb) 移動到 redis 安裝目錄并啟動服務
(2)當前目錄啟動
如果我的dump.rdb 在/root下面,而我到/usr/local/bin這個目錄下去啟動了redis,那么數據是無法恢復的。只能從 /root 下面啟動才能看到之前保存的數據。
如下操作:
~~~
127.0.0.1:6379> CONFIG GET dir #獲取當前操作的目錄
1) "dir"
2) "/root"
127.0.0.1:6379> KEYS * #redis中存在的key
1) "myhash"
2) "k3"
3) "mylist"
4) "b1"
5) "du1"
6) "k1"
7) "b4"
8) "key1"
9) "d"
10) "myset"
11) "du11"
12) "list"
13) "b3"
14) "du"
15) "b2"
16) "skey"
17) "k2"
~~~
下面我關閉redis,假設redis服務掛掉!
~~~
127.0.0.1:6379> SHUTDOWN #關閉服務器
[root@localhost ~]# pwd #當前目錄是/root
/root
[root@localhost ~]# ll #下面有dump.rdb這個文件
總用量 52
-rw-------. 1 root root 1208 6月 14 08:10 anaconda-ks.cfg
drwxr-xr-x. 3 root root 4096 6月 17 04:35 dufy
-rw-r--r--. 1 root root 283 6月 19 00:13 dump.rdb
-rw-r--r--. 1 root root 24772 6月 14 08:10 install.log
-rw-r--r--. 1 root root 7690 6月 14 08:09 install.log.syslog
~~~
那么當我進入/usr/local/bin 目錄下啟動重新啟動redis,看數據是否恢復
~~~
[root@localhost ~]# cd /usr/local/bin/
[root@localhost bin]# pwd
/usr/local/bin
[root@localhost bin]# redis-server /root/dufy/redis/redis-3.0.4/redis.conf
[root@localhost bin]# redis-cli
127.0.0.1:6379> KEYS * # 這里啟動后,查看key沒有恢復
(empty list or set)
127.0.0.1:6379>
~~~
那么我再次關閉服務,從/root下啟動redis看數據是否恢復
~~~
127.0.0.1:6379> SHUTDOWN
not connected> exit
[root@localhost bin]# cd /root/
[root@localhost ~]# pwd
/root
[root@localhost ~]# redis-server /root/dufy/redis/redis-3.0.4/redis.conf
[root@localhost ~]# redis-cli
127.0.0.1:6379> KEYS * #重啟后,查看key,發現恢復成功了!
1) "k1"
2) "b1"
3) "key1"
4) "list"
5) "du11"
6) "du1"
7) "b4"
8) "k3"
9) "myhash"
10) "b3"
11) "d"
12) "skey"
13) "mylist"
14) "du"
15) "k2"
16) "b2"
17) "myset"
127.0.0.1:6379>
~~~
上面說的這一句:將備份文件 (dump.rdb) 移動到 redis 安裝目錄并啟動服務即可或者就在當前目錄啟動。
# 如何停止RDB
配置文件注釋掉
~~~
save 900 1
save 300 10
save 60 10000
~~~
啟動 # save "", 去掉 #。保存后重啟
動態停止RDB命令
在redis-cli中執行:
~~~
config set save ""
~~~
# 總結
~~~
內存中的數據對象 --->rdbsave --> 磁盤中的rdb文件
內存中的數據對象 <---rdload <-- 磁盤中的rdb文件
~~~
* RDB是一個非常緊湊的文件
* RDB在保存RDB文件時父進程唯一需要做的就是foker出一個子進程,接下來工作全部交給子進程來做,父進程不需要再做其他IO操作,所以RDB持久化方式可以最大化redis的性能
* 與AOF相比,在恢復大的數據時候,RDB方式更快一些
* 數據丟失風險大
* RDB需要經常folk子進程來保存數據集到磁盤,當數據集比較大額時候,folk的過程是比較耗時的,可能會導致redis在一些毫秒級不能響應客服端請
- 基礎
- 編譯和安裝
- classpath到底是什么?
- 編譯運行
- 安裝
- sdkman多版本
- jabba多版本
- java字節碼查看
- 數據類型
- 簡介
- 整形
- char和int
- 變量和常量
- 大數值運算
- 基本類型包裝類
- Math類
- 內存劃分
- 位運算符
- 方法相關
- 方法重載
- 可變參數
- 方法引用
- 面向對象
- 定義
- 繼承和覆蓋
- 接口和抽象類
- 接口定義增強
- 內建函數式接口
- 多態
- 泛型
- final和static
- 內部類
- 包
- 修飾符
- 異常
- 枚舉類
- 代碼塊
- 對象克隆
- BeanUtils
- java基礎類
- scanner類
- Random類
- System類
- Runtime類
- Comparable接口
- Comparator接口
- MessageFormat類
- NumberFormat
- 數組相關
- 數組
- Arrays
- string相關
- String
- StringBuffer
- StringBuilder
- 正則
- 日期類
- Locale類
- Date
- DateFormat
- SimpleDateFormat
- Calendar
- 新時間日期API
- 簡介
- LocalDate,LocalTime,LocalDateTime
- Instant時間點
- 帶時區的日期,時間處理
- 時間間隔
- 日期時間校正器
- TimeUnit
- 用yyyy
- 集合
- 集合和迭代器
- ArrayList集合
- List
- Set
- 判斷集合唯一
- Map和Entry
- stack類
- Collections集合工具類
- Stream數據流
- foreach不能修改內部元素
- of方法
- IO
- File類
- 字節流stream
- 字符流Reader
- IO流分類
- 轉換流
- 緩沖流
- 流的操作規律
- properties
- 序列化流與反序列化流
- 打印流
- System類對IO支持
- commons-IO
- IO流總結
- NIO
- 異步與非阻塞
- IO通信
- Unix的IO模型
- epoll對于文件描述符操作模式
- 用戶空間和內核空間
- NIO與普通IO的主要區別
- Paths,Path,Files
- Buffer
- Channel
- Selector
- Pipe
- Charset
- NIO代碼
- 多線程
- 創建線程
- 線程常用方法
- 線程池相關
- 線程池概念
- ThreadPoolExecutor
- Runnable和Callable
- 常用的幾種線程池
- 線程安全
- 線程同步的幾種方法
- synchronized
- 死鎖
- lock接口
- ThreadLoad
- ReentrantLock
- 讀寫鎖
- 鎖的相關概念
- volatile
- 釋放鎖和不釋放鎖的操作
- 等待喚醒機制
- 線程狀態
- 守護線程和普通線程
- Lamda表達式
- 反射相關
- 類加載器
- 反射
- 注解
- junit注解
- 動態代理
- 網絡編程相關
- 簡介
- UDP
- TCP
- 多線程socket上傳圖片
- NIO
- JDBC相關
- JDBC
- 預處理
- 批處理
- 事務
- properties配置文件
- DBUtils
- DBCP連接池
- C3P0連接池
- 獲得MySQL自動生成的主鍵
- Optional類
- Jigsaw模塊化
- 日志相關
- JDK日志
- log4j
- logback
- xml
- tomcat
- maven
- 簡介
- 倉庫
- 目錄結構
- 常用命令
- 生命周期
- idea配置
- jar包沖突
- 依賴范圍
- 私服
- 插件
- git-commit-id-plugin
- maven-assembly-plugin
- maven-resources-plugin
- maven-compiler-plugin
- versions-maven-plugin
- maven-source-plugin
- tomcat-maven-plugin
- 多環境
- 自定義插件
- stream
- swing
- json
- jackson
- optional
- junit
- gradle
- servlet
- 配置
- ServletContext
- 生命周期
- HttpServlet
- request
- response
- 亂碼
- session和cookie
- cookie
- session
- jsp
- 簡介
- 注釋
- 方法,成員變量
- 指令
- 動作標簽
- 隱式對象
- EL
- JSTL
- javaBean
- listener監聽器
- Filter過濾器
- 圖片驗證碼
- HttpUrlConnection
- 國際化
- 文件上傳
- 文件下載
- spring
- 簡介
- Bean
- 獲取和實例化
- 屬性注入
- 自動裝配
- 繼承和依賴
- 作用域
- 使用外部屬性文件
- spel
- 前后置處理器
- 生命周期
- 掃描規則
- 整合多個配置文件
- 注解
- 簡介
- 注解分層
- 類注入
- 分層和作用域
- 初始化方法和銷毀方法
- 屬性
- 泛型注入
- Configuration配置文件
- aop
- aop的實現
- 動態代理實現
- cglib代理實現
- aop名詞
- 簡介
- aop-xml
- aop-注解
- 代理方式選擇
- jdbc
- 簡介
- JDBCTemplate
- 事務
- 整合
- junit整合
- hibernate
- 簡介
- hibernate.properties
- 實體對象三種狀態
- 檢索方式
- 簡介
- 導航對象圖檢索
- OID檢索
- HQL
- Criteria(QBC)
- Query
- 緩存
- 事務管理
- 關系映射
- 注解
- 優化
- MyBatis
- 簡介
- 入門程序
- Mapper動態代理開發
- 原始Dao開發
- Mapper接口開發
- SqlMapConfig.xml
- map映射文件
- 輸出返回map
- 輸入參數
- pojo包裝類
- 多個輸入參數
- resultMap
- 動態sql
- 關聯
- 一對一
- 一對多
- 多對多
- 整合spring
- CURD
- 占位符和sql拼接以及參數處理
- 緩存
- 延遲加載
- 注解開發
- springMVC
- 簡介
- RequestMapping
- 參數綁定
- 常用注解
- 響應
- 文件上傳
- 異常處理
- 攔截器
- springBoot
- 配置
- 熱更新
- java配置
- springboot配置
- yaml語法
- 運行
- Actuator 監控
- 多環境配置切換
- 日志
- 日志簡介
- logback和access
- 日志文件配置屬性
- 開機自啟
- aop
- 整合
- 整合Redis
- 整合Spring Data JPA
- 基本查詢
- 復雜查詢
- 多數據源的支持
- Repository分析
- JpaSpeci?cationExecutor
- 整合Junit
- 整合mybatis
- 常用注解
- 基本操作
- 通用mapper
- 動態sql
- 關聯映射
- 使用xml
- spring容器
- 整合druid
- 整合郵件
- 整合fastjson
- 整合swagger
- 整合JDBC
- 整合spingboot-cache
- 請求
- restful
- 攔截器
- 常用注解
- 參數校驗
- 自定義filter
- websocket
- 響應
- 異常錯誤處理
- 文件下載
- 常用注解
- 頁面
- Thymeleaf組件
- 基本對象
- 內嵌對象
- 上傳文件
- 單元測試
- 模擬請求測試
- 集成測試
- 源碼解析
- 自動配置原理
- 啟動流程分析
- 源碼相關鏈接
- Servlet,Filter,Listener
- springcloud
- 配置
- 父pom
- 創建子工程
- Eureka
- Hystrix
- Ribbon
- Feign
- Zuul
- kotlin
- 基本數據類型
- 函數
- 區間
- 區塊鏈
- 簡介
- linux
- ulimit修改
- 防止syn攻擊
- centos7部署bbr
- debain9開啟bbr
- mysql
- 隔離性
- sql執行加載順序
- 7種join
- explain
- 索引失效和優化
- 表連接優化
- orderby的filesort問題
- 慢查詢
- show profile
- 全局查詢日志
- 死鎖解決
- sql
- 主從
- IDEA
- mac快捷鍵
- 美化界面
- 斷點調試
- 重構
- springboot-devtools熱部署
- IDEA進行JAR打包
- 導入jar包
- ProjectStructure
- toString添加json模板
- 配置maven
- Lombok插件
- rest client
- 文檔顯示
- sftp文件同步
- 書簽
- 代碼查看和搜索
- postfix
- live template
- git
- 文件頭注釋
- JRebel
- 離線模式
- xRebel
- github
- 連接mysql
- 選項沒有Java class的解決方法
- 擴展
- 項目配置和web部署
- 前端開發
- json和Inject language
- idea內存和cpu變高
- 相關設置
- 設計模式
- 單例模式
- 簡介
- 責任鏈
- JUC
- 原子類
- 原子類簡介
- 基本類型原子類
- 數組類型原子類
- 引用類型原子類
- JVM
- JVM規范內存解析
- 對象的創建和結構
- 垃圾回收
- 內存分配策略
- 備注
- 虛擬機工具
- 內存模型
- 同步八種操作
- 內存區域大小參數設置
- happens-before
- web service
- tomcat
- HTTPS
- nginx
- 變量
- 運算符
- 模塊
- Rewrite規則
- Netty
- netty為什么沒用AIO
- 基本組件
- 源碼解讀
- 簡單的socket例子
- 準備netty
- netty服務端啟動
- 案例一:發送字符串
- 案例二:發送對象
- websocket
- ActiveMQ
- JMS
- 安裝
- 生產者-消費者代碼
- 整合springboot
- kafka
- 簡介
- 安裝
- 圖形化界面
- 生產過程分析
- 保存消息分析
- 消費過程分析
- 命令行
- 生產者
- 消費者
- 攔截器interceptor
- partition
- kafka為什么快
- kafka streams
- kafka與flume整合
- RabbitMQ
- AMQP
- 整體架構
- RabbitMQ安裝
- rpm方式安裝
- 命令行和管控頁面
- 消息生產與消費
- 整合springboot
- 依賴和配置
- 簡單測試
- 多方測試
- 對象支持
- Topic Exchange模式
- Fanout Exchange訂閱
- 消息確認
- java client
- RabbitAdmin和RabbitTemplate
- 兩者簡介
- RabbitmqAdmin
- RabbitTemplate
- SimpleMessageListenerContainer
- MessageListenerAdapter
- MessageConverter
- 詳解
- Jackson2JsonMessageConverter
- ContentTypeDelegatingMessageConverter
- lucene
- 簡介
- 入門程序
- luke查看索引
- 分析器
- 索引庫維護
- elasticsearch
- 配置
- 插件
- head插件
- ik分詞插件
- 常用術語
- Mapping映射
- 數據類型
- 屬性方法
- Dynamic Mapping
- Index Template 索引模板
- 管理映射
- 建立映射
- 索引操作
- 單模式下CURD
- mget多個文檔
- 批量操作
- 版本控制
- 基本查詢
- Filter過濾
- 組合查詢
- 分析器
- redis
- String
- list
- hash
- set
- sortedset
- 發布訂閱
- 事務
- 連接池
- 管道
- 分布式可重入鎖
- 配置文件翻譯
- 持久化
- RDB
- AOF
- 總結
- Lettuce
- zookeeper
- zookeeper簡介
- 集群部署
- Observer模式
- 核心工作機制
- zk命令行操作
- zk客戶端API
- 感知服務動態上下線
- 分布式共享鎖
- 原理
- zab協議
- 兩階段提交協議
- 三階段提交協議
- Paxos協議
- ZAB協議
- hadoop
- 簡介
- hadoop安裝
- 集群安裝
- 單機安裝
- linux編譯hadoop
- 添加新節點
- 退役舊節點
- 集群間數據拷貝
- 歸檔
- 快照管理
- 回收站
- 檢查hdfs健康狀態
- 安全模式
- hdfs簡介
- hdfs命令行操作
- 常見問題匯總
- hdfs客戶端操作
- mapreduce工作機制
- 案例-單詞統計
- 局部聚合Combiner
- combiner流程
- combiner案例
- 自定義排序
- 自定義Bean對象
- 排序的分類
- 案例-按總量排序需求
- 一次性完成統計和排序
- 分區
- 分區簡介
- 案例-結果分區
- 多表合并
- reducer端合并
- map端合并(分布式緩存)
- 分組
- groupingComparator
- 案例-求topN
- 全局計數器
- 合并小文件
- 小文件的弊端
- CombineTextInputFormat機制
- 自定義InputFormat
- 自定義outputFormat
- 多job串聯
- 倒排索引
- 共同好友
- 串聯
- 數據壓縮
- InputFormat接口實現類
- yarn簡介
- 推測執行算法
- 本地提交到yarn
- 框架運算全流程
- 數據傾斜問題
- mapreduce的優化方案
- HA機制
- 優化
- Hive
- 安裝
- shell參數
- 數據類型
- 集合類型
- 數據庫
- DDL操作
- 創建表
- 修改表
- 分區表
- 分桶表
- DML操作
- load
- insert
- select
- export,import
- Truncate
- 注意
- 嚴格模式
- 函數
- 內置運算符
- 內置函數
- 自定義函數
- Transfrom實現
- having和where不同
- 壓縮
- 存儲
- 存儲和壓縮結合使用
- explain詳解
- 調優
- Fetch抓取
- 本地模式
- 表的優化
- GroupBy
- count(Distinct)去重統計
- 行列過濾
- 動態分區調整
- 數據傾斜
- 并行執行
- JVM重用
- 推測執行
- reduce內存和個數
- sql查詢結果作為變量(shell)
- youtube
- flume
- 簡介
- 安裝
- 常用組件
- 攔截器
- 案例
- 監聽端口到控制臺
- 采集目錄到HDFS
- 采集文件到HDFS
- 多個agent串聯
- 日志采集和匯總
- 單flume多channel,sink
- 自定義攔截器
- 高可用配置
- 使用注意
- 監控Ganglia
- sqoop
- 安裝
- 常用命令
- 數據導入
- 準備數據
- 導入數據到HDFS
- 導入關系表到HIVE
- 導入表數據子集
- 增量導入
- 數據導出
- 打包腳本
- 作業
- 原理
- azkaban
- 簡介
- 安裝
- 案例
- 簡介
- command類型單一job
- command類型多job工作流flow
- HDFS操作任務
- mapreduce任務
- hive腳本任務
- oozie
- 安裝
- hbase
- 簡介
- 系統架構
- 物理存儲
- 尋址機制
- 讀寫過程
- 安裝
- 命令行
- 基本CURD
- java api
- CURD
- CAS
- 過濾器查詢
- 建表高級屬性
- 與mapreduce結合
- 與sqoop結合
- 協處理器
- 參數配置優化
- 數據備份和恢復
- 節點管理
- 案例-點擊流
- 簡介
- HUE
- 安裝
- storm
- 簡介
- 安裝
- 集群啟動及任務過程分析
- 單詞統計
- 單詞統計(接入kafka)
- 并行度和分組
- 啟動流程分析
- ACK容錯機制
- ACK簡介
- BaseRichBolt簡單使用
- BaseBasicBolt簡單使用
- Ack工作機制
- 本地目錄樹
- zookeeper目錄樹
- 通信機制
- 案例
- 日志告警
- 工具
- YAPI
- chrome無法手動拖動安裝插件
- 時間和空間復雜度
- jenkins
- 定位cpu 100%
- 常用腳本工具
- OOM問題定位
- scala
- 編譯
- 基本語法
- 函數
- 數組常用方法
- 集合
- 并行集合
- 類
- 模式匹配
- 異常
- tuple元祖
- actor并發編程
- 柯里化
- 隱式轉換
- 泛型
- 迭代器
- 流stream
- 視圖view
- 控制抽象
- 注解
- spark
- 企業架構
- 安裝
- api開發
- mycat
- Groovy
- 基礎