<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # 十九、數據整理(上) > 作者:[Chris Albon](https://chrisalbon.com/) > > 譯者:[飛龍](https://github.com/wizardforcel) > > 協議:[CC BY-NC-SA 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/) ## 在 Pandas 中通過分組應用函數 ```py import pandas as pd # 創建示例數據幀 data = {'Platoon': ['A','A','A','A','A','A','B','B','B','B','B','C','C','C','C','C'], 'Casualties': [1,4,5,7,5,5,6,1,4,5,6,7,4,6,4,6]} df = pd.DataFrame(data) df ``` | | Casualties | Platoon | | --- | --- | --- | | 0 | 1 | A | | 1 | 4 | A | | 2 | 5 | A | | 3 | 7 | A | | 4 | 5 | A | | 5 | 5 | A | | 6 | 6 | B | | 7 | 1 | B | | 8 | 4 | B | | 9 | 5 | B | | 10 | 6 | B | | 11 | 7 | C | | 12 | 4 | C | | 13 | 6 | C | | 14 | 4 | C | | 15 | 6 | C | ```py # 按照 df.platoon 對 df 分組 # 然后將滾動平均 lambda 函數應用于 df.casualties df.groupby('Platoon')['Casualties'].apply(lambda x:x.rolling(center=False,window=2).mean()) ''' 0 NaN 1 2.5 2 4.5 3 6.0 4 6.0 5 5.0 6 NaN 7 3.5 8 2.5 9 4.5 10 5.5 11 NaN 12 5.5 13 5.0 14 5.0 15 5.0 dtype: float64 ''' ``` ## 在 Pandas 中向分組應用操作 ```py # 導入模塊 import pandas as pd # 創建數據幀 raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3], 'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]} df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore']) df ``` | | regiment | company | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 0 | Nighthawks | 1st | Miller | 4 | 25 | | 1 | Nighthawks | 1st | Jacobson | 24 | 94 | | 2 | Nighthawks | 2nd | Ali | 31 | 57 | | 3 | Nighthawks | 2nd | Milner | 2 | 62 | | 4 | Dragoons | 1st | Cooze | 3 | 70 | | 5 | Dragoons | 1st | Jacon | 4 | 25 | | 6 | Dragoons | 2nd | Ryaner | 24 | 94 | | 7 | Dragoons | 2nd | Sone | 31 | 57 | | 8 | Scouts | 1st | Sloan | 2 | 62 | | 9 | Scouts | 1st | Piger | 3 | 70 | | 10 | Scouts | 2nd | Riani | 2 | 62 | | 11 | Scouts | 2nd | Ali | 3 | 70 | ```py # 創建一個 groupby 變量,按團隊(regiment)對 preTestScores 分組 groupby_regiment = df['preTestScore'].groupby(df['regiment']) groupby_regiment # <pandas.core.groupby.SeriesGroupBy object at 0x113ddb550> ``` “這個分組變量現在是`GroupBy`對象。 除了分組的鍵`df ['key1']`的一些中間數據之外,它實際上還沒有計算任何東西。 我們的想法是,該對象具有將所有操作應用于每個分組所需的所有信息。” -- PyDA 使用`list()`顯示分組的樣子。 ```py list(df['preTestScore'].groupby(df['regiment'])) ''' [('Dragoons', 4 3 5 4 6 24 7 31 Name: preTestScore, dtype: int64), ('Nighthawks', 0 4 1 24 2 31 3 2 Name: preTestScore, dtype: int64), ('Scouts', 8 2 9 3 10 2 11 3 Name: preTestScore, dtype: int64)] ''' df['preTestScore'].groupby(df['regiment']).describe() ``` | | count | mean | std | min | 25% | 50% | 75% | max | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | regiment | | | | | | | | | | Dragoons | 4.0 | 15.50 | 14.153916 | 3.0 | 3.75 | 14.0 | 25.75 | 31.0 | | Nighthawks | 4.0 | 15.25 | 14.453950 | 2.0 | 3.50 | 14.0 | 25.75 | 31.0 | | Scouts | 4.0 | 2.50 | 0.577350 | 2.0 | 2.00 | 2.5 | 3.00 | 3.0 | ```py # 每個團隊的 preTestScore 均值 groupby_regiment.mean() ''' regiment Dragoons 15.50 Nighthawks 15.25 Scouts 2.50 Name: preTestScore, dtype: float64 ''' df['preTestScore'].groupby([df['regiment'], df['company']]).mean() ''' regiment company Dragoons 1st 3.5 2nd 27.5 Nighthawks 1st 14.0 2nd 16.5 Scouts 1st 2.5 2nd 2.5 Name: preTestScore, dtype: float64 ''' df['preTestScore'].groupby([df['regiment'], df['company']]).mean().unstack() ``` | company | 1st | 2nd | | --- | --- | --- | | regiment | | | | Dragoons | 3.5 | 27.5 | | Nighthawks | 14.0 | 16.5 | | Scouts | 2.5 | 2.5 | ```py # 按團隊和公司(company)對整個數據幀分組 df.groupby(['regiment', 'company']).mean() ``` | | | preTestScore | postTestScore | | --- | --- | --- | --- | | regiment | company | | | | Dragoons | 1st | 3.5 | 47.5 | | 2nd | 27.5 | 75.5 | | Nighthawks | 1st | 14.0 | 59.5 | | 2nd | 16.5 | 59.5 | | Scouts | 1st | 2.5 | 66.0 | | 2nd | 2.5 | 66.0 | ```py # 每個團隊和公司的觀測數量 df.groupby(['regiment', 'company']).size() ''' regiment company Dragoons 1st 2 2nd 2 Nighthawks 1st 2 2nd 2 Scouts 1st 2 2nd 2 dtype: int64 ''' # 按團隊對數據幀分組,對于每個團隊, for name, group in df.groupby('regiment'): # 打印團隊名稱 print(name) # 打印它的數據 print(group) ''' Dragoons regiment company name preTestScore postTestScore 4 Dragoons 1st Cooze 3 70 5 Dragoons 1st Jacon 4 25 6 Dragoons 2nd Ryaner 24 94 7 Dragoons 2nd Sone 31 57 Nighthawks regiment company name preTestScore postTestScore 0 Nighthawks 1st Miller 4 25 1 Nighthawks 1st Jacobson 24 94 2 Nighthawks 2nd Ali 31 57 3 Nighthawks 2nd Milner 2 62 Scouts regiment company name preTestScore postTestScore 8 Scouts 1st Sloan 2 62 9 Scouts 1st Piger 3 70 10 Scouts 2nd Riani 2 62 11 Scouts 2nd Ali 3 70 ''' ``` 按列分組: 特別是在這種情況下:按列對數據類型(即`axis = 1`)分組,然后使用`list()`查看該分組的外觀。 ```py list(df.groupby(df.dtypes, axis=1)) ''' [(dtype('int64'), preTestScore postTestScore 0 4 25 1 24 94 2 31 57 3 2 62 4 3 70 5 4 25 6 24 94 7 31 57 8 2 62 9 3 70 10 2 62 11 3 70), (dtype('O'), regiment company name 0 Nighthawks 1st Miller 1 Nighthawks 1st Jacobson 2 Nighthawks 2nd Ali 3 Nighthawks 2nd Milner 4 Dragoons 1st Cooze 5 Dragoons 1st Jacon 6 Dragoons 2nd Ryaner 7 Dragoons 2nd Sone 8 Scouts 1st Sloan 9 Scouts 1st Piger 10 Scouts 2nd Riani 11 Scouts 2nd Ali)] df.groupby('regiment').mean().add_prefix('mean_') ``` | | mean_preTestScore | mean_postTestScore | | --- | --- | --- | | regiment | | | | Dragoons | 15.50 | 61.5 | | Nighthawks | 15.25 | 59.5 | | Scouts | 2.50 | 66.0 | ```py # 創建獲取分組狀態的函數 def get_stats(group): return {'min': group.min(), 'max': group.max(), 'count': group.count(), 'mean': group.mean()} bins = [0, 25, 50, 75, 100] group_names = ['Low', 'Okay', 'Good', 'Great'] df['categories'] = pd.cut(df['postTestScore'], bins, labels=group_names) df['postTestScore'].groupby(df['categories']).apply(get_stats).unstack() ``` | | count | max | mean | min | | --- | --- | --- | --- | --- | | categories | | | | | | Good | 8.0 | 70.0 | 63.75 | 57.0 | | Great | 2.0 | 94.0 | 94.00 | 94.0 | | Low | 2.0 | 25.0 | 25.00 | 25.0 | | Okay | 0.0 | NaN | NaN | NaN | ## 在 Pandas 數據幀上應用操作 ```py # 導入模型 import pandas as pd import numpy as np data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'year': [2012, 2012, 2013, 2014, 2014], 'reports': [4, 24, 31, 2, 3], 'coverage': [25, 94, 57, 62, 70]} df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma']) df ``` | | coverage | name | reports | year | | --- | --- | --- | --- | --- | | Cochice | 25 | Jason | 4 | 2012 | | Pima | 94 | Molly | 24 | 2012 | | Santa Cruz | 57 | Tina | 31 | 2013 | | Maricopa | 62 | Jake | 2 | 2014 | | Yuma | 70 | Amy | 3 | 2014 | ```py # 創建大寫轉換的 lambda 函數 capitalizer = lambda x: x.upper() ``` 將`capitalizer`函數應用于`name`列。 `apply()`可以沿數據幀的任意軸應用函數。 ```py df['name'].apply(capitalizer) ''' Cochice JASON Pima MOLLY Santa Cruz TINA Maricopa JAKE Yuma AMY Name: name, dtype: object ''' ``` 將`capitalizer` lambda 函數映射到序列`name`中的每個元素。 `map()`對序列的每個元素應用操作。 ```py df['name'].map(capitalizer) ''' Cochice JASON Pima MOLLY Santa Cruz TINA Maricopa JAKE Yuma AMY Name: name, dtype: object ''' ``` 將平方根函數應用于整個數據幀中的每個單元格。 `applymap()`將函數應用于整個數據幀中的每個元素。 ```py # 刪除字符串變量,以便 applymap() 可以運行 df = df.drop('name', axis=1) # 返回數據幀每個單元格的平方根 df.applymap(np.sqrt) ``` | | coverage | reports | year | | --- | --- | --- | --- | | Cochice | 5.000000 | 2.000000 | 44.855323 | | Pima | 9.695360 | 4.898979 | 44.855323 | | Santa Cruz | 7.549834 | 5.567764 | 44.866469 | | Maricopa | 7.874008 | 1.414214 | 44.877611 | | Yuma | 8.366600 | 1.732051 | 44.877611 | 在數據幀上應用函數。 ```py # 創建叫做 times100 的函數 def times100(x): # 如果 x 是字符串, if type(x) is str: # 原樣返回它 return x # 如果不是,返回它乘上 100 elif x: return 100 * x # 并留下其它東西 else: return df.applymap(times100) ``` | | coverage | reports | year | | --- | --- | --- | --- | | Cochice | 2500 | 400 | 201200 | | Pima | 9400 | 2400 | 201200 | | Santa Cruz | 5700 | 3100 | 201300 | | Maricopa | 6200 | 200 | 201400 | | Yuma | 7000 | 300 | 201400 | ## 向 Pandas 數據幀賦予新列 ```py import pandas as pd # 創建空數據幀 df = pd.DataFrame() # 創建一列 df['name'] = ['John', 'Steve', 'Sarah'] # 查看數據幀 df ``` | | name | | --- | --- | | 0 | John | | 1 | Steve | | 2 | Sarah | ```py # 將一個新列賦予名為 age 的 df,它包含年齡列表 df.assign(age = [31, 32, 19]) ``` | | name | age | | --- | --- | --- | | 0 | John | 31 | | 1 | Steve | 32 | | 2 | Sarah | 19 | # 將列表拆分為大小為 N 的分塊 在這個片段中,我們接受一個列表并將其分解為大小為 n 的塊。 在處理具有最大請求大小的 API 時,這是一種非常常見的做法。 這個漂亮的函數由 Ned Batchelder 貢獻,發布于 [StackOverflow](http://stackoverflow.com/questions/312443/how-do-you-split-a-list-into-evenly-sized-chunks-in-python)。 ```py # 創建名稱列表 first_names = ['Steve', 'Jane', 'Sara', 'Mary','Jack','Bob', 'Bily', 'Boni', 'Chris','Sori', 'Will', 'Won','Li'] # 創建叫做 chunks 的函數,有兩個參數 l 和 n def chunks(l, n): # 對于長度為 l 的范圍中的項目 i for i in range(0, len(l), n): # 創建索引范圍 yield l[i:i+n] # 從函數 chunks 的結果創建一個列表 list(chunks(first_names, 5)) ''' [['Steve', 'Jane', 'Sara', 'Mary', 'Jack'], ['Bob', 'Bily', 'Boni', 'Chris', 'Sori'], ['Will', 'Won', 'Li']] ''' ``` ## 在 Pandas 中使用正則表達式將字符串分解為列 ```py # 導入模塊 import re import pandas as pd # 創建帶有一列字符串的數據幀 data = {'raw': ['Arizona 1 2014-12-23 3242.0', 'Iowa 1 2010-02-23 3453.7', 'Oregon 0 2014-06-20 2123.0', 'Maryland 0 2014-03-14 1123.6', 'Florida 1 2013-01-15 2134.0', 'Georgia 0 2012-07-14 2345.6']} df = pd.DataFrame(data, columns = ['raw']) df ``` | | raw | | --- | --- | | 0 | Arizona 1 2014-12-23 3242.0 | | 1 | Iowa 1 2010-02-23 3453.7 | | 2 | Oregon 0 2014-06-20 2123.0 | | 3 | Maryland 0 2014-03-14 1123.6 | | 4 | Florida 1 2013-01-15 2134.0 | | 5 | Georgia 0 2012-07-14 2345.6 | ```py # df['raw'] 的哪些行包含 'xxxx-xx-xx'? df['raw'].str.contains('....-..-..', regex=True) ''' 0 True 1 True 2 True 3 True 4 True 5 True Name: raw, dtype: bool ''' # 在 raw 列中,提取字符串中的單個數字 df['female'] = df['raw'].str.extract('(\d)', expand=True) df['female'] ''' 0 1 1 1 2 0 3 0 4 1 5 0 Name: female, dtype: object ''' # 在 raw 列中,提取字符串中的 xxxx-xx-xx df['date'] = df['raw'].str.extract('(....-..-..)', expand=True) df['date'] ''' 0 2014-12-23 1 2010-02-23 2 2014-06-20 3 2014-03-14 4 2013-01-15 5 2012-07-14 Name: date, dtype: object ''' # 在 raw 列中,提取字符串中的 ####.## df['score'] = df['raw'].str.extract('(\d\d\d\d\.\d)', expand=True) df['score'] ''' 0 3242.0 1 3453.7 2 2123.0 3 1123.6 4 2134.0 5 2345.6 Name: score, dtype: object ''' # 在 raw 列中,提取字符串中的單詞 df['state'] = df['raw'].str.extract('([A-Z]\w{0,})', expand=True) df['state'] ''' 0 Arizona 1 Iowa 2 Oregon 3 Maryland 4 Florida 5 Georgia Name: state, dtype: object ''' df ``` | | raw | female | date | score | state | | --- | --- | --- | --- | --- | --- | | 0 | Arizona 1 2014-12-23 3242.0 | 1 | 2014-12-23 | 3242.0 | Arizona | | 1 | Iowa 1 2010-02-23 3453.7 | 1 | 2010-02-23 | 3453.7 | Iowa | | 2 | Oregon 0 2014-06-20 2123.0 | 0 | 2014-06-20 | 2123.0 | Oregon | | 3 | Maryland 0 2014-03-14 1123.6 | 0 | 2014-03-14 | 1123.6 | Maryland | | 4 | Florida 1 2013-01-15 2134.0 | 1 | 2013-01-15 | 2134.0 | Florida | | 5 | Georgia 0 2012-07-14 2345.6 | 0 | 2012-07-14 | 2345.6 | Georgia | ## 由兩個數據幀貢獻列 ```py # 導入庫 import pandas as pd # 創建數據幀 dataframe_one = pd.DataFrame() dataframe_one['1'] = ['1', '1', '1'] dataframe_one['B'] = ['b', 'b', 'b'] # 創建第二個數據幀 dataframe_two = pd.DataFrame() dataframe_two['2'] = ['2', '2', '2'] dataframe_two['B'] = ['b', 'b', 'b'] # 將每個數據幀的列轉換為集合, # 然后找到這兩個集合的交集。 # 這將是兩個數據幀共享的列的集合。 set.intersection(set(dataframe_one), set(dataframe_two)) # {'B'} ``` ## 從多個列表構建字典 ```py # 創建官員名稱的列表 officer_names = ['Sodoni Dogla', 'Chris Jefferson', 'Jessica Billars', 'Michael Mulligan', 'Steven Johnson'] # 創建官員軍隊的列表 officer_armies = ['Purple Army', 'Orange Army', 'Green Army', 'Red Army', 'Blue Army'] # 創建字典,它是兩個列表的 zip dict(zip(officer_names, officer_armies)) ''' {'Chris Jefferson': 'Orange Army', 'Jessica Billars': 'Green Army', 'Michael Mulligan': 'Red Army', 'Sodoni Dogla': 'Purple Army', 'Steven Johnson': 'Blue Army'} ''' ``` ## 將 CSV 轉換為 Python 代碼來重建它 ```py # 導入 pandas 包 import pandas as pd # 將 csv 文件加載為數據幀 df_original = pd.read_csv('http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv') df = pd.read_csv('http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv') # 打印創建數據幀的代碼 print('==============================') print('RUN THE CODE BELOW THIS LINE') print('==============================') print('raw_data =', df.to_dict(orient='list')) print('df = pd.DataFrame(raw_data, columns = ' + str(list(df_original)) + ')') ''' ============================== RUN THE CODE BELOW THIS LINE ============================== raw_data = {'Sepal.Length': [5.0999999999999996, 4.9000000000000004, 4.7000000000000002, 4.5999999999999996, 5.0, 5.4000000000000004, 4.5999999999999996, 5.0, 4.4000000000000004, 4.9000000000000004, 5.4000000000000004, 4.7999999999999998, 4.7999999999999998, 4.2999999999999998, 5.7999999999999998, 5.7000000000000002, 5.4000000000000004, 5.0999999999999996, 5.7000000000000002, 5.0999999999999996, 5.4000000000000004, 5.0999999999999996, 4.5999999999999996, 5.0999999999999996, 4.7999999999999998, 5.0, 5.0, 5.2000000000000002, 5.2000000000000002, 4.7000000000000002, 4.7999999999999998, 5.4000000000000004, 5.2000000000000002, 5.5, 4.9000000000000004, 5.0, 5.5, 4.9000000000000004, 4.4000000000000004, 5.0999999999999996, 5.0, 4.5, 4.4000000000000004, 5.0, 5.0999999999999996, 4.7999999999999998, 5.0999999999999996, 4.5999999999999996, 5.2999999999999998, 5.0, 7.0, 6.4000000000000004, 6.9000000000000004, 5.5, 6.5, 5.7000000000000002, 6.2999999999999998, 4.9000000000000004, 6.5999999999999996, 5.2000000000000002, 5.0, 5.9000000000000004, 6.0, 6.0999999999999996, 5.5999999999999996, 6.7000000000000002, 5.5999999999999996, 5.7999999999999998, 6.2000000000000002, 5.5999999999999996, 5.9000000000000004, 6.0999999999999996, 6.2999999999999998, 6.0999999999999996, 6.4000000000000004, 6.5999999999999996, 6.7999999999999998, 6.7000000000000002, 6.0, 5.7000000000000002, 5.5, 5.5, 5.7999999999999998, 6.0, 5.4000000000000004, 6.0, 6.7000000000000002, 6.2999999999999998, 5.5999999999999996, 5.5, 5.5, 6.0999999999999996, 5.7999999999999998, 5.0, 5.5999999999999996, 5.7000000000000002, 5.7000000000000002, 6.2000000000000002, 5.0999999999999996, 5.7000000000000002, 6.2999999999999998, 5.7999999999999998, 7.0999999999999996, 6.2999999999999998, 6.5, 7.5999999999999996, 4.9000000000000004, 7.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.5, 6.4000000000000004, 6.7999999999999998, 5.7000000000000002, 5.7999999999999998, 6.4000000000000004, 6.5, 7.7000000000000002, 7.7000000000000002, 6.0, 6.9000000000000004, 5.5999999999999996, 7.7000000000000002, 6.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.2000000000000002, 6.0999999999999996, 6.4000000000000004, 7.2000000000000002, 7.4000000000000004, 7.9000000000000004, 6.4000000000000004, 6.2999999999999998, 6.0999999999999996, 7.7000000000000002, 6.2999999999999998, 6.4000000000000004, 6.0, 6.9000000000000004, 6.7000000000000002, 6.9000000000000004, 5.7999999999999998, 6.7999999999999998, 6.7000000000000002, 6.7000000000000002, 6.2999999999999998, 6.5, 6.2000000000000002, 5.9000000000000004], 'Petal.Width': [0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.10000000000000001, 0.20000000000000001, 0.40000000000000002, 0.40000000000000002, 0.29999999999999999, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.5, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.59999999999999998, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 1.3999999999999999, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6000000000000001, 1.0, 1.3, 1.3999999999999999, 1.0, 1.5, 1.0, 1.3999999999999999, 1.3, 1.3999999999999999, 1.5, 1.0, 1.5, 1.1000000000000001, 1.8, 1.3, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3999999999999999, 1.7, 1.5, 1.0, 1.1000000000000001, 1.0, 1.2, 1.6000000000000001, 1.5, 1.6000000000000001, 1.5, 1.3, 1.3, 1.3, 1.2, 1.3999999999999999, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1000000000000001, 1.3, 2.5, 1.8999999999999999, 2.1000000000000001, 1.8, 2.2000000000000002, 2.1000000000000001, 1.7, 1.8, 1.8, 2.5, 2.0, 1.8999999999999999, 2.1000000000000001, 2.0, 2.3999999999999999, 2.2999999999999998, 1.8, 2.2000000000000002, 2.2999999999999998, 1.5, 2.2999999999999998, 2.0, 2.0, 1.8, 2.1000000000000001, 1.8, 1.8, 1.8, 2.1000000000000001, 1.6000000000000001, 1.8999999999999999, 2.0, 2.2000000000000002, 1.5, 1.3999999999999999, 2.2999999999999998, 2.3999999999999999, 1.8, 1.8, 2.1000000000000001, 2.3999999999999999, 2.2999999999999998, 1.8999999999999999, 2.2999999999999998, 2.5, 2.2999999999999998, 1.8999999999999999, 2.0, 2.2999999999999998, 1.8], 'Petal.Length': [1.3999999999999999, 1.3999999999999999, 1.3, 1.5, 1.3999999999999999, 1.7, 1.3999999999999999, 1.5, 1.3999999999999999, 1.5, 1.5, 1.6000000000000001, 1.3999999999999999, 1.1000000000000001, 1.2, 1.5, 1.3, 1.3999999999999999, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.8999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.3999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.5, 1.3999999999999999, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6000000000000001, 1.8999999999999999, 1.3999999999999999, 1.6000000000000001, 1.3999999999999999, 1.5, 1.3999999999999999, 4.7000000000000002, 4.5, 4.9000000000000004, 4.0, 4.5999999999999996, 4.5, 4.7000000000000002, 3.2999999999999998, 4.5999999999999996, 3.8999999999999999, 3.5, 4.2000000000000002, 4.0, 4.7000000000000002, 3.6000000000000001, 4.4000000000000004, 4.5, 4.0999999999999996, 4.5, 3.8999999999999999, 4.7999999999999998, 4.0, 4.9000000000000004, 4.7000000000000002, 4.2999999999999998, 4.4000000000000004, 4.7999999999999998, 5.0, 4.5, 3.5, 3.7999999999999998, 3.7000000000000002, 3.8999999999999999, 5.0999999999999996, 4.5, 4.5, 4.7000000000000002, 4.4000000000000004, 4.0999999999999996, 4.0, 4.4000000000000004, 4.5999999999999996, 4.0, 3.2999999999999998, 4.2000000000000002, 4.2000000000000002, 4.2000000000000002, 4.2999999999999998, 3.0, 4.0999999999999996, 6.0, 5.0999999999999996, 5.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.5999999999999996, 4.5, 6.2999999999999998, 5.7999999999999998, 6.0999999999999996, 5.0999999999999996, 5.2999999999999998, 5.5, 5.0, 5.0999999999999996, 5.2999999999999998, 5.5, 6.7000000000000002, 6.9000000000000004, 5.0, 5.7000000000000002, 4.9000000000000004, 6.7000000000000002, 4.9000000000000004, 5.7000000000000002, 6.0, 4.7999999999999998, 4.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.0999999999999996, 6.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.5999999999999996, 6.0999999999999996, 5.5999999999999996, 5.5, 4.7999999999999998, 5.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.0999999999999996, 5.9000000000000004, 5.7000000000000002, 5.2000000000000002, 5.0, 5.2000000000000002, 5.4000000000000004, 5.0999999999999996], 'Species': ['setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica'], 'Sepal.Width': [3.5, 3.0, 3.2000000000000002, 3.1000000000000001, 3.6000000000000001, 3.8999999999999999, 3.3999999999999999, 3.3999999999999999, 2.8999999999999999, 3.1000000000000001, 3.7000000000000002, 3.3999999999999999, 3.0, 3.0, 4.0, 4.4000000000000004, 3.8999999999999999, 3.5, 3.7999999999999998, 3.7999999999999998, 3.3999999999999999, 3.7000000000000002, 3.6000000000000001, 3.2999999999999998, 3.3999999999999999, 3.0, 3.3999999999999999, 3.5, 3.3999999999999999, 3.2000000000000002, 3.1000000000000001, 3.3999999999999999, 4.0999999999999996, 4.2000000000000002, 3.1000000000000001, 3.2000000000000002, 3.5, 3.6000000000000001, 3.0, 3.3999999999999999, 3.5, 2.2999999999999998, 3.2000000000000002, 3.5, 3.7999999999999998, 3.0, 3.7999999999999998, 3.2000000000000002, 3.7000000000000002, 3.2999999999999998, 3.2000000000000002, 3.2000000000000002, 3.1000000000000001, 2.2999999999999998, 2.7999999999999998, 2.7999999999999998, 3.2999999999999998, 2.3999999999999999, 2.8999999999999999, 2.7000000000000002, 2.0, 3.0, 2.2000000000000002, 2.8999999999999999, 2.8999999999999999, 3.1000000000000001, 3.0, 2.7000000000000002, 2.2000000000000002, 2.5, 3.2000000000000002, 2.7999999999999998, 2.5, 2.7999999999999998, 2.8999999999999999, 3.0, 2.7999999999999998, 3.0, 2.8999999999999999, 2.6000000000000001, 2.3999999999999999, 2.3999999999999999, 2.7000000000000002, 2.7000000000000002, 3.0, 3.3999999999999999, 3.1000000000000001, 2.2999999999999998, 3.0, 2.5, 2.6000000000000001, 3.0, 2.6000000000000001, 2.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 2.8999999999999999, 2.5, 2.7999999999999998, 3.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 3.0, 3.0, 2.5, 2.8999999999999999, 2.5, 3.6000000000000001, 3.2000000000000002, 2.7000000000000002, 3.0, 2.5, 2.7999999999999998, 3.2000000000000002, 3.0, 3.7999999999999998, 2.6000000000000001, 2.2000000000000002, 3.2000000000000002, 2.7999999999999998, 2.7999999999999998, 2.7000000000000002, 3.2999999999999998, 3.2000000000000002, 2.7999999999999998, 3.0, 2.7999999999999998, 3.0, 2.7999999999999998, 3.7999999999999998, 2.7999999999999998, 2.7999999999999998, 2.6000000000000001, 3.0, 3.3999999999999999, 3.1000000000000001, 3.0, 3.1000000000000001, 3.1000000000000001, 3.1000000000000001, 2.7000000000000002, 3.2000000000000002, 3.2999999999999998, 3.0, 2.5, 3.0, 3.3999999999999999, 3.0], 'Unnamed: 0': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]} ''' df = pd.DataFrame(raw_data, columns = ['Unnamed: 0', 'Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width', 'Species']) # 如果你打算檢查結果 # 1\. 輸入此單元格中上面單元格生成的代碼 raw_data = {'Petal.Width': [0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.10000000000000001, 0.20000000000000001, 0.40000000000000002, 0.40000000000000002, 0.29999999999999999, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.5, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.40000000000000002, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.10000000000000001, 0.20000000000000001, 0.20000000000000001, 0.29999999999999999, 0.29999999999999999, 0.20000000000000001, 0.59999999999999998, 0.40000000000000002, 0.29999999999999999, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 0.20000000000000001, 1.3999999999999999, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6000000000000001, 1.0, 1.3, 1.3999999999999999, 1.0, 1.5, 1.0, 1.3999999999999999, 1.3, 1.3999999999999999, 1.5, 1.0, 1.5, 1.1000000000000001, 1.8, 1.3, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3999999999999999, 1.7, 1.5, 1.0, 1.1000000000000001, 1.0, 1.2, 1.6000000000000001, 1.5, 1.6000000000000001, 1.5, 1.3, 1.3, 1.3, 1.2, 1.3999999999999999, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1000000000000001, 1.3, 2.5, 1.8999999999999999, 2.1000000000000001, 1.8, 2.2000000000000002, 2.1000000000000001, 1.7, 1.8, 1.8, 2.5, 2.0, 1.8999999999999999, 2.1000000000000001, 2.0, 2.3999999999999999, 2.2999999999999998, 1.8, 2.2000000000000002, 2.2999999999999998, 1.5, 2.2999999999999998, 2.0, 2.0, 1.8, 2.1000000000000001, 1.8, 1.8, 1.8, 2.1000000000000001, 1.6000000000000001, 1.8999999999999999, 2.0, 2.2000000000000002, 1.5, 1.3999999999999999, 2.2999999999999998, 2.3999999999999999, 1.8, 1.8, 2.1000000000000001, 2.3999999999999999, 2.2999999999999998, 1.8999999999999999, 2.2999999999999998, 2.5, 2.2999999999999998, 1.8999999999999999, 2.0, 2.2999999999999998, 1.8], 'Sepal.Width': [3.5, 3.0, 3.2000000000000002, 3.1000000000000001, 3.6000000000000001, 3.8999999999999999, 3.3999999999999999, 3.3999999999999999, 2.8999999999999999, 3.1000000000000001, 3.7000000000000002, 3.3999999999999999, 3.0, 3.0, 4.0, 4.4000000000000004, 3.8999999999999999, 3.5, 3.7999999999999998, 3.7999999999999998, 3.3999999999999999, 3.7000000000000002, 3.6000000000000001, 3.2999999999999998, 3.3999999999999999, 3.0, 3.3999999999999999, 3.5, 3.3999999999999999, 3.2000000000000002, 3.1000000000000001, 3.3999999999999999, 4.0999999999999996, 4.2000000000000002, 3.1000000000000001, 3.2000000000000002, 3.5, 3.6000000000000001, 3.0, 3.3999999999999999, 3.5, 2.2999999999999998, 3.2000000000000002, 3.5, 3.7999999999999998, 3.0, 3.7999999999999998, 3.2000000000000002, 3.7000000000000002, 3.2999999999999998, 3.2000000000000002, 3.2000000000000002, 3.1000000000000001, 2.2999999999999998, 2.7999999999999998, 2.7999999999999998, 3.2999999999999998, 2.3999999999999999, 2.8999999999999999, 2.7000000000000002, 2.0, 3.0, 2.2000000000000002, 2.8999999999999999, 2.8999999999999999, 3.1000000000000001, 3.0, 2.7000000000000002, 2.2000000000000002, 2.5, 3.2000000000000002, 2.7999999999999998, 2.5, 2.7999999999999998, 2.8999999999999999, 3.0, 2.7999999999999998, 3.0, 2.8999999999999999, 2.6000000000000001, 2.3999999999999999, 2.3999999999999999, 2.7000000000000002, 2.7000000000000002, 3.0, 3.3999999999999999, 3.1000000000000001, 2.2999999999999998, 3.0, 2.5, 2.6000000000000001, 3.0, 2.6000000000000001, 2.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 2.8999999999999999, 2.5, 2.7999999999999998, 3.2999999999999998, 2.7000000000000002, 3.0, 2.8999999999999999, 3.0, 3.0, 2.5, 2.8999999999999999, 2.5, 3.6000000000000001, 3.2000000000000002, 2.7000000000000002, 3.0, 2.5, 2.7999999999999998, 3.2000000000000002, 3.0, 3.7999999999999998, 2.6000000000000001, 2.2000000000000002, 3.2000000000000002, 2.7999999999999998, 2.7999999999999998, 2.7000000000000002, 3.2999999999999998, 3.2000000000000002, 2.7999999999999998, 3.0, 2.7999999999999998, 3.0, 2.7999999999999998, 3.7999999999999998, 2.7999999999999998, 2.7999999999999998, 2.6000000000000001, 3.0, 3.3999999999999999, 3.1000000000000001, 3.0, 3.1000000000000001, 3.1000000000000001, 3.1000000000000001, 2.7000000000000002, 3.2000000000000002, 3.2999999999999998, 3.0, 2.5, 3.0, 3.3999999999999999, 3.0], 'Species': ['setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica'], 'Unnamed: 0': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150], 'Sepal.Length': [5.0999999999999996, 4.9000000000000004, 4.7000000000000002, 4.5999999999999996, 5.0, 5.4000000000000004, 4.5999999999999996, 5.0, 4.4000000000000004, 4.9000000000000004, 5.4000000000000004, 4.7999999999999998, 4.7999999999999998, 4.2999999999999998, 5.7999999999999998, 5.7000000000000002, 5.4000000000000004, 5.0999999999999996, 5.7000000000000002, 5.0999999999999996, 5.4000000000000004, 5.0999999999999996, 4.5999999999999996, 5.0999999999999996, 4.7999999999999998, 5.0, 5.0, 5.2000000000000002, 5.2000000000000002, 4.7000000000000002, 4.7999999999999998, 5.4000000000000004, 5.2000000000000002, 5.5, 4.9000000000000004, 5.0, 5.5, 4.9000000000000004, 4.4000000000000004, 5.0999999999999996, 5.0, 4.5, 4.4000000000000004, 5.0, 5.0999999999999996, 4.7999999999999998, 5.0999999999999996, 4.5999999999999996, 5.2999999999999998, 5.0, 7.0, 6.4000000000000004, 6.9000000000000004, 5.5, 6.5, 5.7000000000000002, 6.2999999999999998, 4.9000000000000004, 6.5999999999999996, 5.2000000000000002, 5.0, 5.9000000000000004, 6.0, 6.0999999999999996, 5.5999999999999996, 6.7000000000000002, 5.5999999999999996, 5.7999999999999998, 6.2000000000000002, 5.5999999999999996, 5.9000000000000004, 6.0999999999999996, 6.2999999999999998, 6.0999999999999996, 6.4000000000000004, 6.5999999999999996, 6.7999999999999998, 6.7000000000000002, 6.0, 5.7000000000000002, 5.5, 5.5, 5.7999999999999998, 6.0, 5.4000000000000004, 6.0, 6.7000000000000002, 6.2999999999999998, 5.5999999999999996, 5.5, 5.5, 6.0999999999999996, 5.7999999999999998, 5.0, 5.5999999999999996, 5.7000000000000002, 5.7000000000000002, 6.2000000000000002, 5.0999999999999996, 5.7000000000000002, 6.2999999999999998, 5.7999999999999998, 7.0999999999999996, 6.2999999999999998, 6.5, 7.5999999999999996, 4.9000000000000004, 7.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.5, 6.4000000000000004, 6.7999999999999998, 5.7000000000000002, 5.7999999999999998, 6.4000000000000004, 6.5, 7.7000000000000002, 7.7000000000000002, 6.0, 6.9000000000000004, 5.5999999999999996, 7.7000000000000002, 6.2999999999999998, 6.7000000000000002, 7.2000000000000002, 6.2000000000000002, 6.0999999999999996, 6.4000000000000004, 7.2000000000000002, 7.4000000000000004, 7.9000000000000004, 6.4000000000000004, 6.2999999999999998, 6.0999999999999996, 7.7000000000000002, 6.2999999999999998, 6.4000000000000004, 6.0, 6.9000000000000004, 6.7000000000000002, 6.9000000000000004, 5.7999999999999998, 6.7999999999999998, 6.7000000000000002, 6.7000000000000002, 6.2999999999999998, 6.5, 6.2000000000000002, 5.9000000000000004], 'Petal.Length': [1.3999999999999999, 1.3999999999999999, 1.3, 1.5, 1.3999999999999999, 1.7, 1.3999999999999999, 1.5, 1.3999999999999999, 1.5, 1.5, 1.6000000000000001, 1.3999999999999999, 1.1000000000000001, 1.2, 1.5, 1.3, 1.3999999999999999, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.8999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.3999999999999999, 1.6000000000000001, 1.6000000000000001, 1.5, 1.5, 1.3999999999999999, 1.5, 1.2, 1.3, 1.3999999999999999, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6000000000000001, 1.8999999999999999, 1.3999999999999999, 1.6000000000000001, 1.3999999999999999, 1.5, 1.3999999999999999, 4.7000000000000002, 4.5, 4.9000000000000004, 4.0, 4.5999999999999996, 4.5, 4.7000000000000002, 3.2999999999999998, 4.5999999999999996, 3.8999999999999999, 3.5, 4.2000000000000002, 4.0, 4.7000000000000002, 3.6000000000000001, 4.4000000000000004, 4.5, 4.0999999999999996, 4.5, 3.8999999999999999, 4.7999999999999998, 4.0, 4.9000000000000004, 4.7000000000000002, 4.2999999999999998, 4.4000000000000004, 4.7999999999999998, 5.0, 4.5, 3.5, 3.7999999999999998, 3.7000000000000002, 3.8999999999999999, 5.0999999999999996, 4.5, 4.5, 4.7000000000000002, 4.4000000000000004, 4.0999999999999996, 4.0, 4.4000000000000004, 4.5999999999999996, 4.0, 3.2999999999999998, 4.2000000000000002, 4.2000000000000002, 4.2000000000000002, 4.2999999999999998, 3.0, 4.0999999999999996, 6.0, 5.0999999999999996, 5.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.5999999999999996, 4.5, 6.2999999999999998, 5.7999999999999998, 6.0999999999999996, 5.0999999999999996, 5.2999999999999998, 5.5, 5.0, 5.0999999999999996, 5.2999999999999998, 5.5, 6.7000000000000002, 6.9000000000000004, 5.0, 5.7000000000000002, 4.9000000000000004, 6.7000000000000002, 4.9000000000000004, 5.7000000000000002, 6.0, 4.7999999999999998, 4.9000000000000004, 5.5999999999999996, 5.7999999999999998, 6.0999999999999996, 6.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.5999999999999996, 6.0999999999999996, 5.5999999999999996, 5.5, 4.7999999999999998, 5.4000000000000004, 5.5999999999999996, 5.0999999999999996, 5.0999999999999996, 5.9000000000000004, 5.7000000000000002, 5.2000000000000002, 5.0, 5.2000000000000002, 5.4000000000000004, 5.0999999999999996]} df = pd.DataFrame(raw_data, columns = ['Unnamed: 0', 'Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width', 'Species']) # 查看原始數據幀的前幾行 df.head() ``` | | Unnamed: 0 | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | | --- | --- | --- | --- | --- | --- | --- | | 0 | 1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa | | 1 | 2 | 4.9 | 3.0 | 1.4 | 0.2 | setosa | | 2 | 3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa | | 3 | 4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa | | 4 | 5 | 5.0 | 3.6 | 1.4 | 0.2 | setosa | ```py # 查看使用我們的代碼創建的,數據幀的前幾行 df_original.head() ``` | | Unnamed: 0 | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | | --- | --- | --- | --- | --- | --- | --- | | 0 | 1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa | | 1 | 2 | 4.9 | 3.0 | 1.4 | 0.2 | setosa | | 2 | 3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa | | 3 | 4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa | | 4 | 5 | 5.0 | 3.6 | 1.4 | 0.2 | setosa | ## 將分類變量轉換為虛擬變量 ```py # 導入模塊 import pandas as pd # 創建數據幀 raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'], 'sex': ['male', 'female', 'male', 'female', 'female']} df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'sex']) df ``` | | first_name | last_name | sex | | --- | --- | --- | --- | | 0 | Jason | Miller | male | | 1 | Molly | Jacobson | female | | 2 | Tina | Ali | male | | 3 | Jake | Milner | female | | 4 | Amy | Cooze | female | ```py # 從 sex 變量創建一組虛擬變量 df_sex = pd.get_dummies(df['sex']) # 將虛擬變量連接到主數據幀 df_new = pd.concat([df, df_sex], axis=1) df_new ``` | | first_name | last_name | sex | female | male | | --- | --- | --- | --- | --- | --- | | 0 | Jason | Miller | male | 0.0 | 1.0 | | 1 | Molly | Jacobson | female | 1.0 | 0.0 | | 2 | Tina | Ali | male | 0.0 | 1.0 | | 3 | Jake | Milner | female | 1.0 | 0.0 | | 4 | Amy | Cooze | female | 1.0 | 0.0 | ```py # 連接新列的替代方案 df_new = df.join(df_sex) df_new ``` | | first_name | last_name | sex | female | male | | --- | --- | --- | --- | --- | --- | | 0 | Jason | Miller | male | 0.0 | 1.0 | | 1 | Molly | Jacobson | female | 1.0 | 0.0 | | 2 | Tina | Ali | male | 0.0 | 1.0 | | 3 | Jake | Milner | female | 1.0 | 0.0 | | 4 | Amy | Cooze | female | 1.0 | 0.0 | ## 將分類變量轉換為虛擬變量 ```py # 導入模塊 import pandas as pd import patsy # 創建數據幀 raw_data = {'countrycode': [1, 2, 3, 2, 1]} df = pd.DataFrame(raw_data, columns = ['countrycode']) df ``` | | countrycode | | --- | --- | | 0 | 1 | | 1 | 2 | | 2 | 3 | | 3 | 2 | | 4 | 1 | ```py # 將 countrycode 變量轉換為三個二元變量 patsy.dmatrix('C(countrycode)-1', df, return_type='dataframe') ``` | | C(countrycode)[1] | C(countrycode)[2] | C(countrycode)[3] | | --- | --- | --- | --- | | 0 | 1.0 | 0.0 | 0.0 | | 1 | 0.0 | 1.0 | 0.0 | | 2 | 0.0 | 0.0 | 1.0 | | 3 | 0.0 | 1.0 | 0.0 | | 4 | 1.0 | 0.0 | 0.0 | ## 將字符串分類變量轉換為數字變量 ```py # 導入模塊 import pandas as pd raw_data = {'patient': [1, 1, 1, 2, 2], 'obs': [1, 2, 3, 1, 2], 'treatment': [0, 1, 0, 1, 0], 'score': ['strong', 'weak', 'normal', 'weak', 'strong']} df = pd.DataFrame(raw_data, columns = ['patient', 'obs', 'treatment', 'score']) df ``` | | patient | obs | treatment | score | | --- | --- | --- | --- | --- | | 0 | 1 | 1 | 0 | strong | | 1 | 1 | 2 | 1 | weak | | 2 | 1 | 3 | 0 | normal | | 3 | 2 | 1 | 1 | weak | | 4 | 2 | 2 | 0 | strong | ```py # 創建一個函數,將 df['score'] 的所有值轉換為數字 def score_to_numeric(x): if x=='strong': return 3 if x=='normal': return 2 if x=='weak': return 1 df['score_num'] = df['score'].apply(score_to_numeric) df ``` | | patient | obs | treatment | score | score_num | | --- | --- | --- | --- | --- | --- | | 0 | 1 | 1 | 0 | strong | 3 | | 1 | 1 | 2 | 1 | weak | 1 | | 2 | 1 | 3 | 0 | normal | 2 | | 3 | 2 | 1 | 1 | weak | 1 | | 4 | 2 | 2 | 0 | strong | 3 | ## 將變量轉換為時間序列 ```py # 導入庫 import pandas as pd # 創建索引為一組名稱的數據集 raw_data = {'date': ['2014-06-01T01:21:38.004053', '2014-06-02T01:21:38.004053', '2014-06-03T01:21:38.004053'], 'score': [25, 94, 57]} df = pd.DataFrame(raw_data, columns = ['date', 'score']) df ``` | | date | score | | --- | --- | --- | | 0 | 2014-06-01T01:21:38.004053 | 25 | | 1 | 2014-06-02T01:21:38.004053 | 94 | | 2 | 2014-06-03T01:21:38.004053 | 57 | ```py # 轉置數據集,使索引(在本例中為名稱)為列 df["date"] = pd.to_datetime(df["date"]) df = df.set_index(df["date"]) df ``` | | date | score | | --- | --- | --- | | date | | | | --- | --- | --- | | 2014-06-01 01:21:38.004053 | 2014-06-01 01:21:38.004053 | 25 | | 2014-06-02 01:21:38.004053 | 2014-06-02 01:21:38.004053 | 94 | | 2014-06-03 01:21:38.004053 | 2014-06-03 01:21:38.004053 | 57 | ## 在 Pandas 數據幀中計數 ```py # 導入庫 import pandas as pd year = pd.Series([1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894]) guardCorps = pd.Series([0,2,2,1,0,0,1,1,0,3,0,2,1,0,0,1,0,1,0,1]) corps1 = pd.Series([0,0,0,2,0,3,0,2,0,0,0,1,1,1,0,2,0,3,1,0]) corps2 = pd.Series([0,0,0,2,0,2,0,0,1,1,0,0,2,1,1,0,0,2,0,0]) corps3 = pd.Series([0,0,0,1,1,1,2,0,2,0,0,0,1,0,1,2,1,0,0,0]) corps4 = pd.Series([0,1,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0]) corps5 = pd.Series([0,0,0,0,2,1,0,0,1,0,0,1,0,1,1,1,1,1,1,0]) corps6 = pd.Series([0,0,1,0,2,0,0,1,2,0,1,1,3,1,1,1,0,3,0,0]) corps7 = pd.Series([1,0,1,0,0,0,1,0,1,1,0,0,2,0,0,2,1,0,2,0]) corps8 = pd.Series([1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,1,0,1]) corps9 = pd.Series([0,0,0,0,0,2,1,1,1,0,2,1,1,0,1,2,0,1,0,0]) corps10 = pd.Series([0,0,1,1,0,1,0,2,0,2,0,0,0,0,2,1,3,0,1,1]) corps11 = pd.Series([0,0,0,0,2,4,0,1,3,0,1,1,1,1,2,1,3,1,3,1]) corps14 = pd.Series([ 1,1,2,1,1,3,0,4,0,1,0,3,2,1,0,2,1,1,0,0]) corps15 = pd.Series([0,1,0,0,0,0,0,1,0,1,1,0,0,0,2,2,0,0,0,0]) variables = dict(guardCorps = guardCorps, corps1 = corps1, corps2 = corps2, corps3 = corps3, corps4 = corps4, corps5 = corps5, corps6 = corps6, corps7 = corps7, corps8 = corps8, corps9 = corps9, corps10 = corps10, corps11 = corps11 , corps14 = corps14, corps15 = corps15) horsekick = pd.DataFrame(variables, columns = ['guardCorps', 'corps1', 'corps2', 'corps3', 'corps4', 'corps5', 'corps6', 'corps7', 'corps8', 'corps9', 'corps10', 'corps11', 'corps14', 'corps15']) horsekick.index = [1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894] horsekick ``` | | guardCorps | corps1 | corps2 | corps3 | corps4 | corps5 | corps6 | corps7 | corps8 | corps9 | corps10 | corps11 | corps14 | corps15 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 1875 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | | 1876 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | 1877 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | | 1878 | 1 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | 1879 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | | 1880 | 0 | 3 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 1 | 4 | 3 | 0 | | 1881 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | 1882 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 4 | 1 | | 1883 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | | 1884 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | | 1885 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | | 1886 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 0 | | 1887 | 1 | 1 | 2 | 1 | 0 | 0 | 3 | 2 | 1 | 1 | 0 | 1 | 2 | 0 | | 1888 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | 1889 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 2 | | 1890 | 1 | 2 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 2 | 1 | 1 | 2 | 2 | | 1891 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 3 | 3 | 1 | 0 | | 1892 | 1 | 3 | 2 | 0 | 1 | 1 | 3 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | 1893 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 3 | 0 | 0 | | 1894 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | ```py # 計算每個團隊中每個死亡人數的次數 result = horsekick.apply(pd.value_counts).fillna(0); result ``` | | guardCorps | corps1 | corps2 | corps3 | corps4 | corps5 | corps6 | corps7 | corps8 | corps9 | corps10 | corps11 | corps14 | corps15 | | 0 | 9.0 | 11.0 | 12.0 | 11.0 | 12.0 | 10.0 | 9.0 | 11.0 | 13.0 | 10.0 | 10.0 | 6 | 6 | 14.0 | | 1 | 7.0 | 4.0 | 4.0 | 6.0 | 8.0 | 9.0 | 7.0 | 6.0 | 7.0 | 7.0 | 6.0 | 8 | 8 | 4.0 | | 2 | 3.0 | 3.0 | 4.0 | 3.0 | 0.0 | 1.0 | 2.0 | 3.0 | 0.0 | 3.0 | 3.0 | 2 | 3 | 2.0 | | 3 | 1.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3 | 2 | 0.0 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 1 | 0.0 | ```py # 計算每個月死亡總數出現在 guardCorps 的次數 pd.value_counts(horsekick['guardCorps'].values, sort=False) ''' 0 9 1 7 2 3 3 1 dtype: int64 ''' horsekick['guardCorps'].unique() # array([0, 2, 1, 3]) ``` ## 在 Pandas 中創建流水線 Pandas 的流水線功能允許你將 Python 函數串聯在一起,來構建數據處理流水線。 ```py import pandas as pd # 創建空數據幀 df = pd.DataFrame() # Create a column df['name'] = ['John', 'Steve', 'Sarah'] df['gender'] = ['Male', 'Male', 'Female'] df['age'] = [31, 32, 19] # 查看數據幀 df ``` | | name | gender | age | | --- | --- | --- | --- | | 0 | John | Male | 31 | | 1 | Steve | Male | 32 | | 2 | Sarah | Female | 19 | ```py # 創建函數, def mean_age_by_group(dataframe, col): # 它按列分組數據,并返回每組的均值 return dataframe.groupby(col).mean() # 創建函數, def uppercase_column_name(dataframe): # 它大寫所有列標題 dataframe.columns = dataframe.columns.str.upper() # 并返回它 return dataframe # 創建流水線,它應用 mean_age_by_group 函數 (df.pipe(mean_age_by_group, col='gender') # 之后應用 uppercase_column_name 函數 .pipe(uppercase_column_name) ) ``` | | AGE | | --- | --- | | gender | | | Female | 19.0 | | Male | 31.5 | ## 使用`for`循環創建 Pandas 列 ```py import pandas as pd import numpy as np raw_data = {'student_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 'test_score': [76, 88, 84, 67, 53, 96, 64, 91, 77, 73, 52, np.NaN]} df = pd.DataFrame(raw_data, columns = ['student_name', 'test_score']) # 創建列表來儲存數據 grades = [] # 對于列中的每一行 for row in df['test_score']: # 如果大于某個值 if row > 95: # 添加字母分數 grades.append('A') # 或者,如果大于某個值 elif row > 90: # 添加字母分數 grades.append('A-') # 或者,如果大于某個值 elif row > 85: # 添加字母分數 grades.append('B') # 或者,如果大于某個值 elif row > 80: # 添加字母分數 grades.append('B-') # 或者,如果大于某個值 elif row > 75: # 添加字母分數 grades.append('C') # 或者,如果大于某個值 elif row > 70: # 添加字母分數 grades.append('C-') # 或者,如果大于某個值 elif row > 65: # 添加字母分數 grades.append('D') # 或者,如果大于某個值 elif row > 60: # 添加字母分數 grades.append('D-') # 否則 else: # 添加不及格分數 grades.append('Failed') # 從列表創建一列 df['grades'] = grades # 查看新數據幀 df ``` | | student_name | test_score | grades | | --- | --- | --- | --- | | 0 | Miller | 76.0 | C | | 1 | Jacobson | 88.0 | B | | 2 | Ali | 84.0 | B- | | 3 | Milner | 67.0 | D | | 4 | Cooze | 53.0 | Failed | | 5 | Jacon | 96.0 | A | | 6 | Ryaner | 64.0 | D- | | 7 | Sone | 91.0 | A- | | 8 | Sloan | 77.0 | C | | 9 | Piger | 73.0 | C- | | 10 | Riani | 52.0 | Failed | | 11 | Ali | NaN | Failed | ## 創建項目計數 ```py from collections import Counter # 創建一個今天吃的水果的計數器 fruit_eaten = Counter(['Apple', 'Apple', 'Apple', 'Banana', 'Pear', 'Pineapple']) # 查看計數器 fruit_eaten # Counter({'Apple': 3, 'Banana': 1, 'Pear': 1, 'Pineapple': 1}) # 更新菠蘿的計數(因為你只吃菠蘿) fruit_eaten.update(['Pineapple']) # 查看計數器 fruit_eaten # Counter({'Apple': 3, 'Banana': 1, 'Pear': 1, 'Pineapple': 2}) # 查看計數最大的三個項目 fruit_eaten.most_common(3) # [('Apple', 3), ('Pineapple', 2), ('Banana', 1)] ``` ## 基于條件創建一列 ```py # 導入所需模塊 import pandas as pd import numpy as np data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, 2, 3], 'postTestScore': [25, 94, 57, 62, 70]} df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore']) df ``` | | name | age | preTestScore | postTestScore | | --- | --- | --- | --- | --- | | 0 | Jason | 42 | 4 | 25 | | 1 | Molly | 52 | 24 | 94 | | 2 | Tina | 36 | 31 | 57 | | 3 | Jake | 24 | 2 | 62 | | 4 | Amy | 73 | 3 | 70 | ```py # 創建一個名為 df.elderly 的新列 # 如果 df.age 大于 50 則值為 yes,否則為 no df['elderly'] = np.where(df['age']>=50, 'yes', 'no') # 查看數據幀 df ``` | | name | age | preTestScore | postTestScore | elderly | | --- | --- | --- | --- | --- | --- | | 0 | Jason | 42 | 4 | 25 | no | | 1 | Molly | 52 | 24 | 94 | yes | | 2 | Tina | 36 | 31 | 57 | no | | 3 | Jake | 24 | 2 | 62 | no | | 4 | Amy | 73 | 3 | 70 | yes | ## 從詞典鍵和值創建列表 ```py # 創建字典 dict = {'county': ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma'], 'year': [2012, 2012, 2013, 2014, 2014], 'fireReports': [4, 24, 31, 2, 3]} # 創建鍵的列表 list(dict.keys()) # ['fireReports', 'year', 'county'] # 創建值的列表 list(dict.values()) ''' [[4, 24, 31, 2, 3], [2012, 2012, 2013, 2014, 2014], ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma']] ''' ``` ## Pandas 中的交叉表 ```py # 導入庫 import pandas as pd raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 'company': ['infantry', 'infantry', 'cavalry', 'cavalry', 'infantry', 'infantry', 'cavalry', 'cavalry','infantry', 'infantry', 'cavalry', 'cavalry'], 'experience': ['veteran', 'rookie', 'veteran', 'rookie', 'veteran', 'rookie', 'veteran', 'rookie','veteran', 'rookie', 'veteran', 'rookie'], 'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3], 'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]} df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'experience', 'name', 'preTestScore', 'postTestScore']) df ``` | | regiment | company | experience | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | --- | | 0 | Nighthawks | infantry | veteran | Miller | 4 | 25 | | 1 | Nighthawks | infantry | rookie | Jacobson | 24 | 94 | | 2 | Nighthawks | cavalry | veteran | Ali | 31 | 57 | | 3 | Nighthawks | cavalry | rookie | Milner | 2 | 62 | | 4 | Dragoons | infantry | veteran | Cooze | 3 | 70 | | 5 | Dragoons | infantry | rookie | Jacon | 4 | 25 | | 6 | Dragoons | cavalry | veteran | Ryaner | 24 | 94 | | 7 | Dragoons | cavalry | rookie | Sone | 31 | 57 | | 8 | Scouts | infantry | veteran | Sloan | 2 | 62 | | 9 | Scouts | infantry | rookie | Piger | 3 | 70 | | 10 | Scouts | cavalry | veteran | Riani | 2 | 62 | | 11 | Scouts | cavalry | rookie | Ali | 3 | 70 | 按公司和團隊創建交叉表。按公司和團隊計算觀測數量。 ```py pd.crosstab(df.regiment, df.company, margins=True) ``` | company | cavalry | infantry | All | | --- | --- | --- | --- | | regiment | | | | | Dragoons | 2 | 2 | 4 | | Nighthawks | 2 | 2 | 4 | | Scouts | 2 | 2 | 4 | | All | 6 | 6 | 12 | ```py # 為每個團隊創建公司和經驗的交叉表 pd.crosstab([df.company, df.experience], df.regiment, margins=True) ``` | | regiment | Dragoons | Nighthawks | Scouts | All | | --- | --- | --- | --- | --- | --- | | company | experience | | | | | | cavalry | rookie | 1 | 1 | 1 | 3 | | | veteran | 1 | 1 | 1 | 3 | | infantry | rookie | 1 | 1 | 1 | 3 | | | veteran | 1 | 1 | 1 | 3 | | All | | 4 | 4 | 4 | 12 | ## 刪除重復 ```py # 導入模塊 import pandas as pd raw_data = {'first_name': ['Jason', 'Jason', 'Jason','Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Miller', 'Miller','Ali', 'Milner', 'Cooze'], 'age': [42, 42, 1111111, 36, 24, 73], 'preTestScore': [4, 4, 4, 31, 2, 3], 'postTestScore': [25, 25, 25, 57, 62, 70]} df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'preTestScore', 'postTestScore']) df ``` | | first_name | last_name | age | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 0 | Jason | Miller | 42 | 4 | 25 | | 1 | Jason | Miller | 42 | 4 | 25 | | 2 | Jason | Miller | 1111111 | 4 | 25 | | 3 | Tina | Ali | 36 | 31 | 57 | | 4 | Jake | Milner | 24 | 2 | 62 | | 5 | Amy | Cooze | 73 | 3 | 70 | ```py # 確定哪些觀測是重復的 df.duplicated() ''' 0 False 1 True 2 False 3 False 4 False 5 False dtype: bool ''' df.drop_duplicates() ``` | | first_name | last_name | age | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 0 | Jason | Miller | 42 | 4 | 25 | | 2 | Jason | Miller | 1111111 | 4 | 25 | | 3 | Tina | Ali | 36 | 31 | 57 | | 4 | Jake | Milner | 24 | 2 | 62 | | 5 | Amy | Cooze | 73 | 3 | 70 | ```py # 刪除 first_name 列中的重復項 # 但保留重復集中的最后一個觀測 df.drop_duplicates(['first_name'], keep='last') ``` | | first_name | last_name | age | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 2 | Jason | Miller | 1111111 | 4 | 25 | | 3 | Tina | Ali | 36 | 31 | 57 | | 4 | Jake | Milner | 24 | 2 | 62 | | 5 | Amy | Cooze | 73 | 3 | 70 | ## Pandas 數據幀的描述性統計 ```py # 導入模塊 import pandas as pd data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, 2, 3], 'postTestScore': [25, 94, 57, 62, 70]} df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore']) df ``` | | name | age | preTestScore | postTestScore | | --- | --- | --- | --- | --- | | 0 | Jason | 42 | 4 | 25 | | 1 | Molly | 52 | 24 | 94 | | 2 | Tina | 36 | 31 | 57 | | 3 | Jake | 24 | 2 | 62 | | 4 | Amy | 73 | 3 | 70 | 5 rows × 4 columns ```py # 所有年齡之和 df['age'].sum() # 227 df['preTestScore'].mean() # 12.800000000000001 df['preTestScore'].cumsum() ''' 0 4 1 28 2 59 3 61 4 64 Name: preTestScore, dtype: int64 ''' df['preTestScore'].describe() ''' count 5.000000 mean 12.800000 std 13.663821 min 2.000000 25% 3.000000 50% 4.000000 75% 24.000000 max 31.000000 Name: preTestScore, dtype: float64 ''' df['preTestScore'].count() # 5 df['preTestScore'].min() # 2 df['preTestScore'].max() # 31 df['preTestScore'].median() # 4.0 df['preTestScore'].var() # 186.69999999999999 df['preTestScore'].std() # 13.663820841916802 df['preTestScore'].skew() # 0.74334524573267591 df['preTestScore'].kurt() # -2.4673543738411525 df.corr() ``` | | age | preTestScore | postTestScore | | --- | --- | --- | --- | | age | 1.000000 | -0.105651 | 0.328852 | | preTestScore | -0.105651 | 1.000000 | 0.378039 | | postTestScore | 0.328852 | 0.378039 | 1.000000 | 3 rows × 3 columns ```py # 協方差矩陣 df.cov() ``` | | age | preTestScore | postTestScore | | --- | --- | --- | --- | | age | 340.80 | -26.65 | 151.20 | | preTestScore | -26.65 | 186.70 | 128.65 | | postTestScore | 151.20 | 128.65 | 620.30 | 3 rows × 3 columns ## 丟棄行或者列 ```py # 導入模塊 import pandas as pd data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'year': [2012, 2012, 2013, 2014, 2014], 'reports': [4, 24, 31, 2, 3]} df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma']) df ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | | Santa Cruz | Tina | 31 | 2013 | | Maricopa | Jake | 2 | 2014 | | Yuma | Amy | 3 | 2014 | ```py # 丟棄觀測(行) df.drop(['Cochice', 'Pima']) ``` | | name | reports | year | | --- | --- | --- | --- | | Santa Cruz | Tina | 31 | 2013 | | Maricopa | Jake | 2 | 2014 | | Yuma | Amy | 3 | 2014 | ```py # 丟棄變量(列) # 注意:`axis = 1`表示我們指的是列,而不是行 df.drop('reports', axis=1) ``` | | name | year | | --- | --- | --- | | Cochice | Jason | 2012 | | Pima | Molly | 2012 | | Santa Cruz | Tina | 2013 | | Maricopa | Jake | 2014 | | Yuma | Amy | 2014 | 如果它包含某個值(這里是`Tina`),丟棄一行。 具體來說:創建一個名為`df`的新數據框,名稱列中的單元格的值不等于`Tina`。 ```py df[df.name != 'Tina'] ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | | Maricopa | Jake | 2 | 2014 | | Yuma | Amy | 3 | 2014 | 按照行號丟棄一行(在本例中為第 3 行)。 請注意,Pandas使用從零開始的編號,因此 0 是第一行,1 是第二行,等等。 ```py df.drop(df.index[2]) ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | | Maricopa | Jake | 2 | 2014 | | Yuma | Amy | 3 | 2014 | 可以擴展到范圍。 ```py df.drop(df.index[[2,3]]) ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | | Yuma | Amy | 3 | 2014 | 或相對于 DF 的末尾來丟棄。 ```py df.drop(df.index[-2]) ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | | Santa Cruz | Tina | 31 | 2013 | | Yuma | Amy | 3 | 2014 | 你也可以選擇相對于起始或末尾的范圍。 ```py df[:3] # 保留前三個 ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | | Santa Cruz | Tina | 31 | 2013 | ```py df[:-3] # 丟掉后三個 ``` | | name | reports | year | | --- | --- | --- | --- | | Cochice | Jason | 4 | 2012 | | Pima | Molly | 24 | 2012 | ## 枚舉列表 ```py # 創建字符串列表 data = ['One','Two','Three','Four','Five'] # 對于 enumerate(data) 中的每個項目 for item in enumerate(data): # 打印整個枚舉的元素 print(item) # 只打印值(沒有索引) print(item[1]) ''' (0, 'One') One (1, 'Two') Two (2, 'Three') Three (3, 'Four') Four (4, 'Five') Five ''' ``` ## 在 Pandas 中將包含列表的單元擴展為自己的變量 ```py # 導入 pandas import pandas as pd # 創建數據集 raw_data = {'score': [1,2,3], 'tags': [['apple','pear','guava'],['truck','car','plane'],['cat','dog','mouse']]} df = pd.DataFrame(raw_data, columns = ['score', 'tags']) # 查看數據集 df ``` | | score | tags | | --- | --- | --- | | 0 | 1 | [apple, pear, guava] | | 1 | 2 | [truck, car, plane] | | 2 | 3 | [cat, dog, mouse] | ```py # 將 df.tags 擴展為自己的數據幀 tags = df['tags'].apply(pd.Series) # 將每個變量重命名為標簽 tags = tags.rename(columns = lambda x : 'tag_' + str(x)) # 查看 tags 數據幀 tags ``` | | tag_0 | tag_1 | tag_2 | | --- | --- | --- | --- | | 0 | apple | pear | guava | | 1 | truck | car | plane | | 2 | cat | dog | mouse | ```py # 將 tags 數據幀添加回原始數據幀 pd.concat([df[:], tags[:]], axis=1) ``` | | score | tags | tag_0 | tag_1 | tag_2 | | --- | --- | --- | --- | --- | --- | | 0 | 1 | [apple, pear, guava] | apple | pear | guava | | 1 | 2 | [truck, car, plane] | truck | car | plane | | 2 | 3 | [cat, dog, mouse] | cat | dog | mouse | ## 過濾 pandas 數據幀 ```py # 導入模塊 import pandas as pd data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'year': [2012, 2012, 2013, 2014, 2014], 'reports': [4, 24, 31, 2, 3], 'coverage': [25, 94, 57, 62, 70]} df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma']) df ``` | | coverage | name | reports | year | | --- | --- | --- | --- | --- | | Cochice | 25 | Jason | 4 | 2012 | | Pima | 94 | Molly | 24 | 2012 | | Santa Cruz | 57 | Tina | 31 | 2013 | | Maricopa | 62 | Jake | 2 | 2014 | | Yuma | 70 | Amy | 3 | 2014 | ```py # 查看列 df['name'] ''' Cochice Jason Pima Molly Santa Cruz Tina Maricopa Jake Yuma Amy Name: name, dtype: object ''' df[['name', 'reports']] ``` | | name | reports | | --- | --- | --- | | Cochice | Jason | 4 | | Pima | Molly | 24 | | Santa Cruz | Tina | 31 | | Maricopa | Jake | 2 | | Yuma | Amy | 3 | ```py # 查看前兩行 df[:2] ``` | | coverage | name | reports | year | | --- | --- | --- | --- | --- | | Cochice | 25 | Jason | 4 | 2012 | | Pima | 94 | Molly | 24 | 2012 | ```py # 查看 Coverage 大于 50 的行 df[df['coverage'] > 50] ``` | | coverage | name | reports | year | | --- | --- | --- | --- | --- | | Pima | 94 | Molly | 24 | 2012 | | Santa Cruz | 57 | Tina | 31 | 2013 | | Maricopa | 62 | Jake | 2 | 2014 | | Yuma | 70 | Amy | 3 | 2014 | ```py # 查看 Coverage 大于 50 并且 Reports 小于 4 的行 df[(df['coverage'] > 50) & (df['reports'] < 4)] ``` | | coverage | name | reports | year | | --- | --- | --- | --- | --- | | Maricopa | 62 | Jake | 2 | 2014 | | Yuma | 70 | Amy | 3 | 2014 | ## 尋找數據幀的列中的最大值 ```py # 導入模塊 %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import numpy as np # 創建數據幀 raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, 2, 3], 'postTestScore': [25, 94, 57, 62, 70]} df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'preTestScore', 'postTestScore']) df ``` | | first_name | last_name | age | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 0 | Jason | Miller | 42 | 4 | 25 | | 1 | Molly | Jacobson | 52 | 24 | 94 | | 2 | Tina | Ali | 36 | 31 | 57 | | 3 | Jake | Milner | 24 | 2 | 62 | | 4 | Amy | Cooze | 73 | 3 | 70 | ```py # 獲取 preTestScore 列中的最大值的索引 df['preTestScore'].idxmax() # 2 ``` ## 尋找數據幀中的唯一值 ```py import pandas as pd import numpy as np raw_data = {'regiment': ['51st', '29th', '2nd', '19th', '12th', '101st', '90th', '30th', '193th', '1st', '94th', '91th'], 'trucks': ['MAZ-7310', np.nan, 'MAZ-7310', 'MAZ-7310', 'Tatra 810', 'Tatra 810', 'Tatra 810', 'Tatra 810', 'ZIS-150', 'Tatra 810', 'ZIS-150', 'ZIS-150'], 'tanks': ['Merkava Mark 4', 'Merkava Mark 4', 'Merkava Mark 4', 'Leopard 2A6M', 'Leopard 2A6M', 'Leopard 2A6M', 'Arjun MBT', 'Leopard 2A6M', 'Arjun MBT', 'Arjun MBT', 'Arjun MBT', 'Arjun MBT'], 'aircraft': ['none', 'none', 'none', 'Harbin Z-9', 'Harbin Z-9', 'none', 'Harbin Z-9', 'SH-60B Seahawk', 'SH-60B Seahawk', 'SH-60B Seahawk', 'SH-60B Seahawk', 'SH-60B Seahawk']} df = pd.DataFrame(raw_data, columns = ['regiment', 'trucks', 'tanks', 'aircraft']) # 查看前幾行 df.head() ``` | | regiment | trucks | tanks | aircraft | | --- | --- | --- | --- | --- | | 0 | 51st | MAZ-7310 | Merkava Mark 4 | none | | 1 | 29th | NaN | Merkava Mark 4 | none | | 2 | 2nd | MAZ-7310 | Merkava Mark 4 | none | | 3 | 19th | MAZ-7310 | Leopard 2A6M | Harbin Z-9 | | 4 | 12th | Tatra 810 | Leopard 2A6M | Harbin Z-9 | ```py # 通過將 pandas 列轉換為集合 # 創建唯一值的列表 list(set(df.trucks)) # [nan, 'Tatra 810', 'MAZ-7310', 'ZIS-150'] # 創建 df.trucks 中的唯一值的列表 list(df['trucks'].unique()) # ['MAZ-7310', nan, 'Tatra 810', 'ZIS-150'] ``` ## 地理編碼和反向地理編碼 在使用地理數據時,地理編碼(將物理地址或位置轉換為經緯度)和反向地理編碼(將經緯度轉換為物理地址或位置)是常見任務。 Python 提供了許多軟件包,使任務變得異常簡單。 在下面的教程中,我使用 pygeocoder(Google 的 geo-API 的包裝器)來進行地理編碼和反向地理編碼。 首先,我們要加載我們想要在腳本中使用的包。 具體來說,我正在為地理函數加載 pygeocoder,為數據幀結構加載 pandas,為缺失值(`np.nan`)函數加載 numpy。 ```py # 加載包 from pygeocoder import Geocoder import pandas as pd import numpy as np ``` 地理數據有多種形式,在這種情況下,我們有一個 Python 字典,包含五個經緯度的字符串,每個坐標在逗號分隔的坐標對中。 ```py # 創建原始數據的字典 data = {'Site 1': '31.336968, -109.560959', 'Site 2': '31.347745, -108.229963', 'Site 3': '32.277621, -107.734724', 'Site 4': '31.655494, -106.420484', 'Site 5': '30.295053, -104.014528'} ``` 雖然技術上沒必要,因為我最初使用 R,我是數據幀的忠實粉絲,所以讓我們把模擬的數據字典變成數據幀。 ```py # 將字典轉換為 pandas 數據幀 df = pd.DataFrame.from_dict(data, orient='index') # 查看數據幀 df ``` | | 0 | | --- | --- | | Site 1 | 31.336968, -109.560959 | | Site 2 | 31.347745, -108.229963 | | Site 3 | 32.277621, -107.734724 | | Site 4 | 31.655494, -106.420484 | | Site 5 | 30.295053, -104.014528 | 你現在可以看到,我們有了包含五行的數據幀,每行包含一個經緯度字符串。 在我們處理數據之前,我們需要1)將字符串分成緯度和經度,然后將它們轉換為浮點數。以下代碼就是這樣。 ```py # 為循環創建兩個列表 lat = [] lon = [] # 對于變量中的每一行 for row in df[0]: # 嘗試 try: # 用逗號分隔行,轉換為浮點 # 并將逗號前的所有內容追加到 lat lat.append(float(row.split(',')[0])) # 用逗號分隔行,轉換為浮點 # 并將逗號后的所有內容追加到 lon lon.append(float(row.split(',')[1])) # 但是如果你得到了錯誤 except: # 向 lat 添加缺失值 lat.append(np.NaN) # 向 lon 添加缺失值 lon.append(np.NaN) # 從 lat 和 lon 創建新的兩列 df['latitude'] = lat df['longitude'] = lon ``` 讓我們看看現在有了什么。 ```py # 查看數據幀 df ``` | | 0 | latitude | longitude | | --- | --- | --- | --- | | Site 1 | 31.336968, -109.560959 | 31.336968 | -109.560959 | | Site 2 | 31.347745, -108.229963 | 31.347745 | -108.229963 | | Site 3 | 32.277621, -107.734724 | 32.277621 | -107.734724 | | Site 4 | 31.655494, -106.420484 | 31.655494 | -106.420484 | | Site 5 | 30.295053, -104.014528 | 30.295053 | -104.014528 | 真棒。這正是我們想要看到的,一列用于緯度的浮點和一列用于經度的浮點。 為了反轉地理編碼,我們將特定的經緯度對(這里為第一行,索引為`0`)提供給 pygeocoder 的`reverse_geocoder`函數。 ```py # 將經度和緯度轉換為某個位置 results = Geocoder.reverse_geocode(df['latitude'][0], df['longitude'][0]) ``` 現在我們可以開始提取我們想要的數據了。 ```py # 打印經緯度 results.coordinates # (31.3372728, -109.5609559) # 打印城市 results.city # 'Douglas' # 打印國家/地區 results.country # 'United States' # 打印街道地址(如果可用) results.street_address # 打印行政區 results.administrative_area_level_1 # 'Arizona' ``` 對于地理編碼,我們需要將包含地址或位置(例如城市)的字符串,傳入地理編碼函數中。 但是,并非所有字符串的格式都是 Google 的 geo-API 可以理解的。 如果由`.geocode().valid_address`函數驗證有效,我們可以轉換。 ```py # 驗證地址是否有效(即在 Google 的系統中) Geocoder.geocode("4207 N Washington Ave, Douglas, AZ 85607").valid_address # True ``` 因為輸出是True,我們現在知道這是一個有效的地址,因此可以打印緯度和經度坐標。 ```py # 打印經緯度 results.coordinates # (31.3372728, -109.5609559) ``` 但更有趣的是,一旦地址由 Google 地理 API 處理,我們就可以解析它并輕松地分隔街道號碼,街道名稱等。 ```py # 尋找特定地址中的經緯度 result = Geocoder.geocode("7250 South Tucson Boulevard, Tucson, AZ 85756") # 打印街道號碼 result.street_number # '7250' # 打印街道名 result.route # 'South Tucson Boulevard' ``` 你就實現了它。Python 使整個過程變得簡單,只需幾分鐘即可完成分析。祝好運! ## 地理定位城市和國家 本教程創建一個函數,嘗試獲取城市和國家并返回其經緯度。 但是當城市不可用時(通常是這種情況),則返回該國中心的經緯度。 ```py from geopy.geocoders import Nominatim geolocator = Nominatim() import numpy as np def geolocate(city=None, country=None): ''' 輸入城市和國家,或僅輸入國家。 如果可以的話,返回城市的經緯度坐標,否則返回該國家中心的經緯度。 ''' # 如果城市存在 if city != None: # 嘗試 try: # 地理定位城市和國家 loc = geolocator.geocode(str(city + ',' + country)) # 并返回經緯度 return (loc.latitude, loc.longitude) # 否則 except: # 返回缺失值 return np.nan # 如果城市不存在 else: # 嘗試 try: # 地理定位國家中心 loc = geolocator.geocode(country) # 返回經緯度 return (loc.latitude, loc.longitude) # 否則 except: # 返回缺失值 return np.nan # 地理定位城市和國家 geolocate(city='Austin', country='USA') # (30.2711286, -97.7436995) # 僅僅地理定位國家 geolocate(country='USA') # (39.7837304, -100.4458824) ``` ## 使用 pandas 分組時間序列 ```py # 導入所需模塊 import pandas as pd import numpy as np df = pd.DataFrame() df['german_army'] = np.random.randint(low=20000, high=30000, size=100) df['allied_army'] = np.random.randint(low=20000, high=40000, size=100) df.index = pd.date_range('1/1/2014', periods=100, freq='H') df.head() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-01-01 00:00:00 | 28755 | 33938 | | 2014-01-01 01:00:00 | 25176 | 28631 | | --- | --- | --- | | 2014-01-01 02:00:00 | 23261 | 39685 | | --- | --- | --- | | 2014-01-01 03:00:00 | 28686 | 27756 | | --- | --- | --- | | 2014-01-01 04:00:00 | 24588 | 25681 | | --- | --- | --- | ### Truncate the dataframe ```py df.truncate(before='1/2/2014', after='1/3/2014') ``` | | german_army | allied_army | | --- | --- | --- | | 2014-01-02 00:00:00 | 26401 | 20189 | | 2014-01-02 01:00:00 | 29958 | 23934 | | 2014-01-02 02:00:00 | 24492 | 39075 | | 2014-01-02 03:00:00 | 25707 | 39262 | | 2014-01-02 04:00:00 | 27129 | 35961 | | 2014-01-02 05:00:00 | 27903 | 25418 | | 2014-01-02 06:00:00 | 20409 | 25163 | | 2014-01-02 07:00:00 | 25736 | 34794 | | 2014-01-02 08:00:00 | 24057 | 27209 | | 2014-01-02 09:00:00 | 26875 | 33402 | | 2014-01-02 10:00:00 | 23963 | 38575 | | 2014-01-02 11:00:00 | 27506 | 31859 | | 2014-01-02 12:00:00 | 23564 | 25750 | | 2014-01-02 13:00:00 | 27958 | 24365 | | 2014-01-02 14:00:00 | 24915 | 38866 | | 2014-01-02 15:00:00 | 23538 | 33820 | | 2014-01-02 16:00:00 | 23361 | 30080 | | 2014-01-02 17:00:00 | 27284 | 22922 | | 2014-01-02 18:00:00 | 24176 | 32155 | | 2014-01-02 19:00:00 | 23924 | 27763 | | 2014-01-02 20:00:00 | 23111 | 32343 | | 2014-01-02 21:00:00 | 20348 | 28907 | | 2014-01-02 22:00:00 | 27136 | 38634 | | 2014-01-02 23:00:00 | 28649 | 29950 | | 2014-01-03 00:00:00 | 21292 | 26395 | ```py # 設置數據幀的索引 df.index = df.index + pd.DateOffset(months=4, days=5) df.head() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 00:00:00 | 28755 | 33938 | | 2014-05-06 01:00:00 | 25176 | 28631 | | 2014-05-06 02:00:00 | 23261 | 39685 | | 2014-05-06 03:00:00 | 28686 | 27756 | | 2014-05-06 04:00:00 | 24588 | 25681 | ```py # 將變量提前一小時 df.shift(1).head() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 00:00:00 | NaN | NaN | | 2014-05-06 01:00:00 | 28755.0 | 33938.0 | | 2014-05-06 02:00:00 | 25176.0 | 28631.0 | | 2014-05-06 03:00:00 | 23261.0 | 39685.0 | | 2014-05-06 04:00:00 | 28686.0 | 27756.0 | ```py # 將變量延后一小時 df.shift(-1).tail() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-09 23:00:00 | 26903.0 | 39144.0 | | 2014-05-10 00:00:00 | 27576.0 | 39759.0 | | 2014-05-10 01:00:00 | 25232.0 | 35246.0 | | 2014-05-10 02:00:00 | 23391.0 | 21044.0 | | 2014-05-10 03:00:00 | NaN | NaN | ```py # 對每小時觀測值求和來按天匯總 df.resample('D').sum() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 | 605161 | 755962 | | 2014-05-07 | 608100 | 740396 | | 2014-05-08 | 589744 | 700297 | | 2014-05-09 | 607092 | 719283 | | 2014-05-10 | 103102 | 135193 | ```py # 對每小時觀測值求平均來按天匯總 df.resample('D').mean() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 | 25215.041667 | 31498.416667 | | 2014-05-07 | 25337.500000 | 30849.833333 | | 2014-05-08 | 24572.666667 | 29179.041667 | | 2014-05-09 | 25295.500000 | 29970.125000 | | 2014-05-10 | 25775.500000 | 33798.250000 | ```py # 對每小時觀測值求最小值來按天匯總 df.resample('D').min() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 | 24882.0 | 31310.0 | | 2014-05-07 | 25311.0 | 30969.5 | | 2014-05-08 | 24422.5 | 28318.0 | | 2014-05-09 | 24941.5 | 32082.5 | | 2014-05-10 | 26067.5 | 37195.0 | ```py # 對每小時觀測值求中值來按天匯總 df.resample('D').median() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 | 24882.0 | 31310.0 | | 2014-05-07 | 25311.0 | 30969.5 | | 2014-05-08 | 24422.5 | 28318.0 | | 2014-05-09 | 24941.5 | 32082.5 | | 2014-05-10 | 26067.5 | 37195.0 | ```py # 對每小時觀測值取第一個值來按天匯總 df.resample('D').first() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 | 28755 | 33938 | | 2014-05-07 | 26401 | 20189 | | 2014-05-08 | 21292 | 26395 | | 2014-05-09 | 25764 | 22613 | | 2014-05-10 | 26903 | 39144 | ```py # 對每小時觀測值取最后一個值來按天匯總 df.resample('D').last() ``` | | german_army | allied_army | | --- | --- | --- | | 2014-05-06 | 28214 | 32110 | | 2014-05-07 | 28649 | 29950 | | 2014-05-08 | 28379 | 32600 | | 2014-05-09 | 26752 | 22379 | | 2014-05-10 | 23391 | 21044 | ```py # 對每小時觀測值取第一個值,最后一個值,最高值,最低值來按天匯總 df.resample('D').ohlc() ``` | | german_army | allied_army | | --- | --- | --- | | | open | high | low | close | open | high | low | close | | 2014-05-06 | 28755 | 29206 | 20037 | 28214 | 33938 | 39955 | 23417 | 32110 | | 2014-05-07 | 26401 | 29958 | 20348 | 28649 | 20189 | 39262 | 20189 | 29950 | | 2014-05-08 | 21292 | 29786 | 20296 | 28379 | 26395 | 38197 | 20404 | 32600 | | 2014-05-09 | 25764 | 29952 | 20738 | 26752 | 22613 | 39695 | 20189 | 22379 | | 2014-05-10 | 26903 | 27576 | 23391 | 23391 | 39144 | 39759 | 21044 | 21044 | ## 按時間分組數據 2016 年 3 月 13 日,Pandas 版本 0.18.0 發布,重采樣功能的運行方式發生了重大變化。 本教程遵循 v0.18.0,不適用于以前版本的 pandas。 首先讓我們加載我們關心的模塊。 ```py # 導入所需模塊 import pandas as pd import datetime import numpy as np ``` 接下來,讓我們創建一些樣例數據,我們可以將它們按時間分組作為樣本。 在這個例子中,我創建了一個包含兩列 365 行的數據幀。一列是日期,第二列是數值。 ```py # 為今天創建 datetime 變量 base = datetime.datetime.today() # 創建一列變量 # 包含 365 天的 datetime 值 date_list = [base - datetime.timedelta(days=x) for x in range(0, 365)] # 創建 365 個數值的列表 score_list = list(np.random.randint(low=1, high=1000, size=365)) # 創建空數據幀 df = pd.DataFrame() # 從 datetime 變量創建一列 df['datetime'] = date_list # 將列轉換為 datetime 類型 df['datetime'] = pd.to_datetime(df['datetime']) # 將 datetime 列設為索引 df.index = df['datetime'] # 為數值得分變量創建一列 df['score'] = score_list # 讓我們看看數據 df.head() ``` | | datetime | score | | --- | --- | --- | | datetime | | | | 2016-06-02 09:57:54.793972 | 2016-06-02 09:57:54.793972 | 900 | | 2016-06-01 09:57:54.793972 | 2016-06-01 09:57:54.793972 | 121 | | 2016-05-31 09:57:54.793972 | 2016-05-31 09:57:54.793972 | 547 | | 2016-05-30 09:57:54.793972 | 2016-05-30 09:57:54.793972 | 504 | | 2016-05-29 09:57:54.793972 | 2016-05-29 09:57:54.793972 | 304 | 在 pandas 中,按時間分組的最常用方法是使用`.resample()`函數。 在 v0.18.0 中,此函數是兩階段的。 這意味著`df.resample('M')`創建了一個對象,我們可以對其應用其他函數(`mean`,`count`,`sum`等) ```py # 按月對數據分組,并取每組(即每個月)的平均值 df.resample('M').mean() ``` | | score | | --- | --- | | datetime | | | 2015-06-30 | 513.629630 | | 2015-07-31 | 561.516129 | | 2015-08-31 | 448.032258 | | 2015-09-30 | 548.000000 | | 2015-10-31 | 480.419355 | | 2015-11-30 | 487.033333 | | 2015-12-31 | 499.935484 | | 2016-01-31 | 429.193548 | | 2016-02-29 | 520.413793 | | 2016-03-31 | 349.806452 | | 2016-04-30 | 395.500000 | | 2016-05-31 | 503.451613 | | 2016-06-30 | 510.500000 | ```py # 按月對數據分組,并獲取每組(即每個月)的總和 df.resample('M').sum() ``` | | score | | --- | --- | | datetime | | | 2015-06-30 | 13868 | | 2015-07-31 | 17407 | | 2015-08-31 | 13889 | | 2015-09-30 | 16440 | | 2015-10-31 | 14893 | | 2015-11-30 | 14611 | | 2015-12-31 | 15498 | | 2016-01-31 | 13305 | | 2016-02-29 | 15092 | | 2016-03-31 | 10844 | | 2016-04-30 | 11865 | | 2016-05-31 | 15607 | | 2016-06-30 | 1021 | 分組有很多選項。 你可以在[ Pandas 的時間序列文檔](http://pandas.pydata.org/pandas-docs/stable/timeseries.html)中了解它們的更多信息,但是,為了你的方便,我也在下面列出了它們。 | 值 | 描述 | | --- | --- | | B | business day frequency | | C | custom business day frequency (experimental) | | D | calendar day frequency | | W | weekly frequency | | M | month end frequency | | BM | business month end frequency | | CBM | custom business month end frequency | | MS | month start frequency | | BMS | business month start frequency |CBMS| custom business month start frequency | | Q | quarter end frequency | | BQ | business quarter endfrequency | | QS | quarter start frequency | | BQS | business quarter start frequency | | A | year end frequency | | BA | business year end frequency | | AS | year start frequency | | BAS | business year start frequency | | BH | business hour frequency | | H | hourly frequency | | T | minutely frequency | | S | secondly frequency | | L | milliseonds | | U | microseconds | | N | nanoseconds | ## 按小時分組數據 ```py # 導入庫 import pandas as pd import numpy as np # 創建 2000 個元素的時間序列 # 每五分鐘一個元素,起始于 2000.1.1 time = pd.date_range('1/1/2000', periods=2000, freq='5min') # 創建 pandas 序列,帶有 0 到 100 的隨機值 # 將 time 用于索引 series = pd.Series(np.random.randint(100, size=2000), index=time) # 查看前幾行 series[0:10] ''' 2000-01-01 00:00:00 40 2000-01-01 00:05:00 13 2000-01-01 00:10:00 99 2000-01-01 00:15:00 72 2000-01-01 00:20:00 4 2000-01-01 00:25:00 36 2000-01-01 00:30:00 24 2000-01-01 00:35:00 20 2000-01-01 00:40:00 83 2000-01-01 00:45:00 44 Freq: 5T, dtype: int64 ''' # 按索引的小時值對數據分組,然后按平均值進行匯總 series.groupby(series.index.hour).mean() ''' 0 50.380952 1 49.380952 2 49.904762 3 53.273810 4 47.178571 5 46.095238 6 49.047619 7 44.297619 8 53.119048 9 48.261905 10 45.166667 11 54.214286 12 50.714286 13 56.130952 14 50.916667 15 42.428571 16 46.880952 17 56.892857 18 54.071429 19 47.607143 20 50.940476 21 50.511905 22 44.550000 23 50.250000 dtype: float64 ''' ``` ## 對行分組 ```py # 導入模塊 import pandas as pd # 示例數據幀 raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3], 'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]} df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore']) df ``` | | regiment | company | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 0 | Nighthawks | 1st | Miller | 4 | 25 | | 1 | Nighthawks | 1st | Jacobson | 24 | 94 | | 2 | Nighthawks | 2nd | Ali | 31 | 57 | | 3 | Nighthawks | 2nd | Milner | 2 | 62 | | 4 | Dragoons | 1st | Cooze | 3 | 70 | | 5 | Dragoons | 1st | Jacon | 4 | 25 | | 6 | Dragoons | 2nd | Ryaner | 24 | 94 | | 7 | Dragoons | 2nd | Sone | 31 | 57 | | 8 | Scouts | 1st | Sloan | 2 | 62 | | 9 | Scouts | 1st | Piger | 3 | 70 | | 10 | Scouts | 2nd | Riani | 2 | 62 | | 11 | Scouts | 2nd | Ali | 3 | 70 | ```py # 創建分組對象。 換句話說, # 創建一個表示該特定分組的對象。 # 這里,我們按照團隊來分組 pre-test 得分。 regiment_preScore = df['preTestScore'].groupby(df['regiment']) # 展示每個團隊的 pre-test 得分的均值 regiment_preScore.mean() ''' regiment Dragoons 15.50 Nighthawks 15.25 Scouts 2.50 Name: preTestScore, dtype: float64 ''' ``` ## Pandas 中的分層數據 ```py # 導入模塊 import pandas as pd # 創建數據幀 raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3], 'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]} df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore']) df ``` | | regiment | company | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | | 0 | Nighthawks | 1st | Miller | 4 | 25 | | 1 | Nighthawks | 1st | Jacobson | 24 | 94 | | 2 | Nighthawks | 2nd | Ali | 31 | 57 | | 3 | Nighthawks | 2nd | Milner | 2 | 62 | | 4 | Dragoons | 1st | Cooze | 3 | 70 | | 5 | Dragoons | 1st | Jacon | 4 | 25 | | 6 | Dragoons | 2nd | Ryaner | 24 | 94 | | 7 | Dragoons | 2nd | Sone | 31 | 57 | | 8 | Scouts | 1st | Sloan | 2 | 62 | | 9 | Scouts | 1st | Piger | 3 | 70 | | 10 | Scouts | 2nd | Riani | 2 | 62 | | 11 | Scouts | 2nd | Ali | 3 | 70 | ```py # 設置分層索引但將列保留在原位 df = df.set_index(['regiment', 'company'], drop=False) df ``` | | | regiment | company | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | --- | --- | | regiment | company | | | | | | | | Nighthawks | 1st | Nighthawks | 1st | Miller | 4 | 25 | | 1st | Nighthawks | 1st | Jacobson | 24 | 94 | | 2nd | Nighthawks | 2nd | Ali | 31 | 57 | | 2nd | Nighthawks | 2nd | Milner | 2 | 62 | | | Dragoons | 1st | Dragoons | 1st | Cooze | 3 | 70 | | 1st | Dragoons | 1st | Jacon | 4 | 25 | | 2nd | Dragoons | 2nd | Ryaner | 24 | 94 | | 2nd | Dragoons | 2nd | Sone | 31 | 57 | | | Scouts | 1st | Scouts | 1st | Sloan | 2 | 62 | | 1st | Scouts | 1st | Piger | 3 | 70 | | 2nd | Scouts | 2nd | Riani | 2 | 62 | | 2nd | Scouts | 2nd | Ali | 3 | 70 | ```py # 將分層索引設置為團隊然后公司 df = df.set_index(['regiment', 'company']) df ``` | | | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | | regiment | company | | | | | | Nighthawks | 1st | Miller | 4 | 25 | | 1st | Jacobson | 24 | 94 | | 2nd | Ali | 31 | 57 | | 2nd | Milner | 2 | 62 | | | Dragoons | 1st | Cooze | 3 | 70 | | 1st | Jacon | 4 | 25 | | 2nd | Ryaner | 24 | 94 | | 2nd | Sone | 31 | 57 | | | Scouts | 1st | Sloan | 2 | 62 | | 1st | Piger | 3 | 70 | | 2nd | Riani | 2 | 62 | | 2nd | Ali | 3 | 70 | ```py # 查看索引 df.index MultiIndex(levels=[['Dragoons', 'Nighthawks', 'Scouts'], ['1st', '2nd']], labels=[[1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2], [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], names=['regiment', 'company']) # 交換索引中的級別 df.swaplevel('regiment', 'company') ``` | | | name | preTestScore | postTestScore | | --- | --- | --- | --- | --- | | company | regiment | | | | | 1st | Nighthawks | Miller | 4 | 25 | | | Nighthawks | Jacobson | 24 | 94 | | 2nd | Nighthawks | Ali | 31 | 57 | | | Nighthawks | Milner | 2 | 62 | | 1st | Dragoons | Cooze | 3 | 70 | | | Dragoons | Jacon | 4 | 25 | | 2nd | Dragoons | Ryaner | 24 | 94 | | | Dragoons | Sone | 31 | 57 | | 1st | Scouts | Sloan | 2 | 62 | | | Scouts | Piger | 3 | 70 | | 2nd | Scouts | Riani | 2 | 62 | | | Scouts | Ali | 3 | 70 | ```py # 按需求和數據 df.sum(level='regiment') ``` | | preTestScore | postTestScore | | --- | --- | --- | | regiment | | | | Nighthawks | 61 | 238 | | Dragoons | 62 | 246 | | Scouts | 10 | 264 |
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看