
上圖所示的方案,利用消息中間件如 rabbitMQ 來實現分布式下單及庫存扣減過程的最終一致性。對這幅圖做以下說明:
1)order-service 中,
~~~
在 t_order 表添加訂單記錄 &&
在 t_local_msg 添加對應的扣減庫存消息
~~~
這兩個過程要在一個事務中完成,保證過程的原子性。同樣,repo-service 中,
~~~
檢查本次扣庫存操作是否已經執行過 &&
執行扣減庫存如果本次扣減操作沒有執行過 &&
寫判重表 &&
向 MQ sever 反饋消息消費完成 ACK
~~~
這四個過程也要在一個事務中完成,保證過程的原子性。
2)order-service 中有一個后臺程序,源源不斷地把消息表中的消息傳送給消息中間件,成功后則刪除消息表中對應的消息。如果失敗了,也會不斷嘗試重傳。由于存在網絡 2 將軍問題,即當 order-service 發送給消息中間件的消息網絡超時時,這時候消息中間件可能收到了消息但響應 ACK 失敗,也可能沒收到,order-service 會再次發送該消息,直至消息中間件響應 ACK 成功,這樣可能發生消息的重復發送,不過沒關系,只要保證消息不丟失,不亂序就行,后面 repo-service 會做去重處理。
3)消息中間件向 repo-service 推送 repo\_deduction\_msg,repo-service 成功處理完成后會向中間件響應 ACK,消息中間件收到這個 ACK 才認為 repo-service 成功處理了這條消息,否則會重復推送該消息。但是有這樣的情形:repo-service 成功處理了消息,向中間件發送的 ACK 在網絡傳輸中由于網絡故障丟失了,導致中間件沒有收到 ACK 重新推送了該消息。這也要靠 repo-service 的消息去重特性來避免消息重復消費。
4)在 2)和 3)中提到了兩種導致 repo-service 重復收到消息的原因,一是生產者重復生產,二是中間件重傳。為了實現業務的冪等性,repo-service 中維護了一張判重表,這張表中記錄了被成功處理的消息的 id。repo-service 每次接收到新的消息都先判斷消息是否被成功處理過,若是的話不再重復處理
通過這種設計,實現了消息在發送方不丟失,消息在接收方不被重復消費,聯合起來就是消息不漏不重,嚴格實現了 order-service 和 repo-service 的兩個數據庫中數據的最終一致性。
基于消息中間件的最終一致性全局事務方案是互聯網公司在高并發場景中探索出的一種創新型應用模式,利用 MQ 實現微服務之間的異步調用、解耦合和流量削峰,支持全局事務的高并發,并保證分布式數據記錄的最終一致性
- 概述
- CAP理論
- BASE理論
- ACID
- 分布式系統相關技術
- 主流數據庫連接池
- 基礎
- 系統單點
- 負載均衡
- HTTP重定向負載均衡
- DNS域名解析負載均衡
- 反向代理負載均衡
- IP負載均衡
- 數據鏈路層負載均衡
- 負載均衡算法
- 輪詢法(Round Robin)
- 加權輪詢(Weight Round Robin)
- 隨機算法(Random)
- 源地址Hash算法
- 加權隨機法(Weight Random)
- 最小連接數法(Least Connections)
- 接入層負載均衡
- 軟件架構
- 性能
- 性能測試指標
- 響應時間
- 并發數
- 吞吐量
- 性能計數器
- 性能測試方法
- 性能測試報告
- 性能優化
- Web前端性能優化
- 應用服務器性能優化
- 可用性
- 服務降級
- 伸縮性
- 擴展性
- 事件驅動架構
- 安全性
- 信息加密技術
- 分布式系統概述
- 自動化
- 分布式唯一ID
- 冪等設計
- 分布式鎖
- 腦裂
- 一致性原理
- Paxos
- Zab
- Raft
- 分布式遠程服務調用
- RMI
- Spring RMI
- WebService
- SOA服務架構
- 微服務架構
- 微服務的九大特性
- 服務注冊和發現
- 解決方案及組件
- 分布式網關
- 注冊中心
- Zookeeper
- ZNode
- Watch接口
- 持久節點-配置中心實現原理
- 臨時節點-注冊中心
- Zookeeper選舉
- Zookeeper角色
- ZooKeeper工作原理
- 選主流程
- 同步流程
- Leader工作流程
- Follower工作流程
- 常見限流算法
- 計數器算法
- 漏桶算法
- 令牌桶算法
- 滑動窗口
- 計數器&滑動窗口
- 斷路器
- 大流量高并發高可用
- 高可用
- 高并發/大流量
- 分布式緩存系統
- 基本概念
- 緩存命中率
- 緩存最大元素
- 緩存回收策略
- 回收算法
- 緩存穿透與緩存雪崩
- CDN緩存
- 緩存分類
- memcached
- 客戶端路由原理
- 內存管理機制
- Redis
- Redis數據模型
- redisObject/Redis type/Redis encoding
- 命令的類型檢查和多態
- skiplist跳躍表
- 為什么使用跳躍表
- redis-內存管理機制
- Redis淘汰策略
- Redis持久化策略
- Redis并發競爭
- redis主從復制
- Redis集群實現方案
- Redis Cluster
- redis事務
- Redis-Sentinel
- Redis適用場景
- Redis客戶端
- redis rehash原理
- dict數據結構
- 觸發rehash的條件
- 漸進式rehash
- 漸進式rehash過程
- Redis多線程版本
- 緩存實際應用
- 堆緩存-Guava Cache
- 主要參數
- Caffeine
- Spring注解緩存
- 分布式存儲
- Database
- AUTOCOMMIT
- 臟讀&幻讀&不可重復讀
- 子查詢
- 連接
- 內連接
- 自連接
- 自然連接
- 外連接
- 組合查詢
- 隔離級別
- 數據庫范式
- 索引實現機制
- 數據庫拆分
- 表分區
- 分庫
- 分表
- MySQL
- MySQL基礎架構
- 鎖分類
- 排它鎖&獨占鎖
- 共享鎖
- 間隙鎖
- 表級鎖
- 存儲引擎
- 磁盤IO
- 磁盤結構圖
- 磁盤數據讀寫原理
- MySQL索引原理
- B+樹索引
- 局部性原理
- 索引數據結構
- 聯合索引
- 最左前綴匹配原則
- 建索引的幾大原則
- 數據文件和索引文件
- 執行計劃explain
- 常見問題
- 數據頁
- MYSQL單表存儲量計算
- 回表
- 索引覆蓋
- 索引下推
- 頁分裂和頁合并
- InnoDB
- innodb索引
- Innodb引擎的底層實現
- MyISAM
- MyISAM引擎的底層實現
- MVCC
- Next-Key Locks
- MySQL索引類型
- MYSQL復制
- 主從復制
- 讀寫分離
- MySQL Dual-Master
- 分庫分表實現方案
- MySQL事務實現原理
- MYSQL調優
- 性能優化
- HBase
- 不停機分庫分表遷移
- RDBMS&NoSQL
- 分布式事務
- 協議或事務模型
- X/Open XA協議
- 分布式事務編程接口規范JTA
- TCC模型
- 解決方案
- 兩階段提交2PC
- 三階段提交3PC
- Seata
- 分布式事務Seata產品模塊
- AT模式
- TCC模式
- Saga模式
- XA模式
- 基于消息中間件的最終一致性事務方案
- 消息隊列
- AMQP
- JMS
- ActiveMQ
- RabbitMQ
- RocketMQ
- RocketMQ基本概念
- 主要特性
- 分區順序消息
- 全局順序消息
- 消息可靠性
- 定時消息
- 消息重試
- 死信隊列
- 分布式事務消息
- RocketMQ架構
- Producer
- Consumer
- NameServer
- Broker
- RocketMQ設計
- 消息存儲
- 頁緩存與內存映射
- 消息刷盤
- 通信機制
- console控制臺
- RocketMQ部署架構
- Kafka
- Pulsar
- MQ消息重復消費與丟失
- 主流消息隊列比較
- 分布式調度系統
- 分布式搜索
- 分布式計算
- 架構案例
- 秒殺業務
- 秒殺整體架構
- 常見的監控系統
- 小米手機搶購秒殺方案
- 架構師領導藝術
- 架構師箴言
- 技術leader核心職責
- WEB服務器
- Servlet
- Servlet實現
- Servlet生命周期
- Servlet容器工作模式
- Servlet工作原理
- servlet線程安全
- CGI&FastCGI
- CGI
- FastCGI
- FastCGI與CGI特點
- CGI與Servlet比較
- HTTP Server
- Nginx
- Apache
- Nginx與Apache比較
- Application Server
- Tomcat
- Tomcat總體架構
- Connector
- 連接器核心功能
- ProtocolHandler
- EndPoint
- Processor
- Adapter
- Container
- 請求定位Servlet的過程
- Lifecycle生命周期
- Tomcat模塊設計
- Tomcat實例
- Tomcat運行原理
- spring & servlet
- Tomcat啟動流程
- Tomcat支持的I/O模型
- Tomcat應用層協議
- Tomcat類加載機制
- Tomcat類加載器
- Tomcat類加載器層次
- Apache+Tomcat
- 序列化
- XML&JSON
- JSON
- JAVA原生序列化
- hessian
- 常見中間件
- Canal
- Databus
- ELK日志套件
- 數據庫連接池
- spring狀態機
- 常見解決方案
- 二維碼掃碼登錄原理
- 前沿技術
- Saas服務
- 服務網格(Service Mesh)
- 云原生
- 常見面試問題
- Redis持久化的幾種方式
- Redis的緩存失效策略
- 附錄
- 二將軍問題
- 常見問題定位步驟
- 如何快速熟悉新系統
- 制定技術方案套路
- NUMA陷阱