## 緩存分類和應用場景
常見的緩存分為local cache(本地緩存)和remote cache(分布式緩存):
* **本地緩存**:指的是在應用中的緩存組件,其最大的優點是應用和cache是在同一個進程內部,請求緩存非常快速,沒有過多的網絡開銷等,在單應用不需要集群支持或者集群情況下各節點無需互相通知的場景下使用本地緩存較合適;同時,它的缺點也是應為緩存跟應用程序耦合,多個應用程序無法直接的共享緩存,各應用或集群的各節點都需要維護自己的單獨緩存,對內存是一種浪費。
* **分布式緩存**:指的是與應用分離的緩存組件或服務,其最大的優點是自身就是一個獨立的應用,與本地應用隔離,多個應用可直接的共享緩存
### Java緩存類型
1. 堆緩存
使用Java堆內存來存儲對象。可以使用Guava Cache、Ehcache 3.x、MapDB實現。
* 優點:使用堆緩存的好處是沒有序列化/反序列化,是最快的緩存;
* 缺點:很明顯,當緩存的數據量很大時, GC暫停時間會變長,存儲容量受限于堆空間大小;一般通過軟引用/弱引用來存儲緩存對象,即當堆內存不足時,可以強制回收這部分內存釋放堆內存空間。一般使用堆緩存存儲較熱的數據
2. 堆外緩存
即緩存數據存儲在堆外內存。可以使用Ehcache 3.x、MapDB實現。
* 優點:可以減少GC暫停時間(堆對象轉移到堆外,GC掃描和移動的對象變少了),可以支持更大的緩存空間(只受機器內存大小限制,不受堆空間的影響)。
* 缺點:讀取數據時需要序列化/反序列化,會比堆緩存慢很多。
3. 磁盤緩存
即緩存數據的存儲在磁盤上。當JVM重啟時數據還是在的。而堆緩存/堆外緩存重啟時數據會丟失,需要重新加載。可以使用Ehcache 3.x、MapDB實現
4. 分布式緩存
在多JVM實例的情況時,進程內緩存和磁盤緩存會存在兩個問題:
a.單機容量問題;
b.數據一致性問題(既然數據允許緩存,則表示允許一定時間內的不一致,因此可以設置緩存數據的過期時間來定期更新數據);
c.緩存不命中時,需要回源到DB/服務查詢變多:每個實例在緩存不命中情況下都會回源到DB加載數據,因此,多實例后DB整體的訪問量就變多了。解決辦法可以使用如一致性哈希分片算法來解決。因此,這些情況可以考慮使用分布式緩存來解決。
- 概述
- CAP理論
- BASE理論
- ACID
- 分布式系統相關技術
- 主流數據庫連接池
- 基礎
- 系統單點
- 負載均衡
- HTTP重定向負載均衡
- DNS域名解析負載均衡
- 反向代理負載均衡
- IP負載均衡
- 數據鏈路層負載均衡
- 負載均衡算法
- 輪詢法(Round Robin)
- 加權輪詢(Weight Round Robin)
- 隨機算法(Random)
- 源地址Hash算法
- 加權隨機法(Weight Random)
- 最小連接數法(Least Connections)
- 接入層負載均衡
- 軟件架構
- 性能
- 性能測試指標
- 響應時間
- 并發數
- 吞吐量
- 性能計數器
- 性能測試方法
- 性能測試報告
- 性能優化
- Web前端性能優化
- 應用服務器性能優化
- 可用性
- 服務降級
- 伸縮性
- 擴展性
- 事件驅動架構
- 安全性
- 信息加密技術
- 分布式系統概述
- 自動化
- 分布式唯一ID
- 冪等設計
- 分布式鎖
- 腦裂
- 一致性原理
- Paxos
- Zab
- Raft
- 分布式遠程服務調用
- RMI
- Spring RMI
- WebService
- SOA服務架構
- 微服務架構
- 微服務的九大特性
- 服務注冊和發現
- 解決方案及組件
- 分布式網關
- 注冊中心
- Zookeeper
- ZNode
- Watch接口
- 持久節點-配置中心實現原理
- 臨時節點-注冊中心
- Zookeeper選舉
- Zookeeper角色
- ZooKeeper工作原理
- 選主流程
- 同步流程
- Leader工作流程
- Follower工作流程
- 常見限流算法
- 計數器算法
- 漏桶算法
- 令牌桶算法
- 滑動窗口
- 計數器&滑動窗口
- 斷路器
- 大流量高并發高可用
- 高可用
- 高并發/大流量
- 分布式緩存系統
- 基本概念
- 緩存命中率
- 緩存最大元素
- 緩存回收策略
- 回收算法
- 緩存穿透與緩存雪崩
- CDN緩存
- 緩存分類
- memcached
- 客戶端路由原理
- 內存管理機制
- Redis
- Redis數據模型
- redisObject/Redis type/Redis encoding
- 命令的類型檢查和多態
- skiplist跳躍表
- 為什么使用跳躍表
- redis-內存管理機制
- Redis淘汰策略
- Redis持久化策略
- Redis并發競爭
- redis主從復制
- Redis集群實現方案
- Redis Cluster
- redis事務
- Redis-Sentinel
- Redis適用場景
- Redis客戶端
- redis rehash原理
- dict數據結構
- 觸發rehash的條件
- 漸進式rehash
- 漸進式rehash過程
- Redis多線程版本
- 緩存實際應用
- 堆緩存-Guava Cache
- 主要參數
- Caffeine
- Spring注解緩存
- 分布式存儲
- Database
- AUTOCOMMIT
- 臟讀&幻讀&不可重復讀
- 子查詢
- 連接
- 內連接
- 自連接
- 自然連接
- 外連接
- 組合查詢
- 隔離級別
- 數據庫范式
- 索引實現機制
- 數據庫拆分
- 表分區
- 分庫
- 分表
- MySQL
- MySQL基礎架構
- 鎖分類
- 排它鎖&獨占鎖
- 共享鎖
- 間隙鎖
- 表級鎖
- 存儲引擎
- 磁盤IO
- 磁盤結構圖
- 磁盤數據讀寫原理
- MySQL索引原理
- B+樹索引
- 局部性原理
- 索引數據結構
- 聯合索引
- 最左前綴匹配原則
- 建索引的幾大原則
- 數據文件和索引文件
- 執行計劃explain
- 常見問題
- 數據頁
- MYSQL單表存儲量計算
- 回表
- 索引覆蓋
- 索引下推
- 頁分裂和頁合并
- InnoDB
- innodb索引
- Innodb引擎的底層實現
- MyISAM
- MyISAM引擎的底層實現
- MVCC
- Next-Key Locks
- MySQL索引類型
- MYSQL復制
- 主從復制
- 讀寫分離
- MySQL Dual-Master
- 分庫分表實現方案
- MySQL事務實現原理
- MYSQL調優
- 性能優化
- HBase
- 不停機分庫分表遷移
- RDBMS&NoSQL
- 分布式事務
- 協議或事務模型
- X/Open XA協議
- 分布式事務編程接口規范JTA
- TCC模型
- 解決方案
- 兩階段提交2PC
- 三階段提交3PC
- Seata
- 分布式事務Seata產品模塊
- AT模式
- TCC模式
- Saga模式
- XA模式
- 基于消息中間件的最終一致性事務方案
- 消息隊列
- AMQP
- JMS
- ActiveMQ
- RabbitMQ
- RocketMQ
- RocketMQ基本概念
- 主要特性
- 分區順序消息
- 全局順序消息
- 消息可靠性
- 定時消息
- 消息重試
- 死信隊列
- 分布式事務消息
- RocketMQ架構
- Producer
- Consumer
- NameServer
- Broker
- RocketMQ設計
- 消息存儲
- 頁緩存與內存映射
- 消息刷盤
- 通信機制
- console控制臺
- RocketMQ部署架構
- Kafka
- Pulsar
- MQ消息重復消費與丟失
- 主流消息隊列比較
- 分布式調度系統
- 分布式搜索
- 分布式計算
- 架構案例
- 秒殺業務
- 秒殺整體架構
- 常見的監控系統
- 小米手機搶購秒殺方案
- 架構師領導藝術
- 架構師箴言
- 技術leader核心職責
- WEB服務器
- Servlet
- Servlet實現
- Servlet生命周期
- Servlet容器工作模式
- Servlet工作原理
- servlet線程安全
- CGI&FastCGI
- CGI
- FastCGI
- FastCGI與CGI特點
- CGI與Servlet比較
- HTTP Server
- Nginx
- Apache
- Nginx與Apache比較
- Application Server
- Tomcat
- Tomcat總體架構
- Connector
- 連接器核心功能
- ProtocolHandler
- EndPoint
- Processor
- Adapter
- Container
- 請求定位Servlet的過程
- Lifecycle生命周期
- Tomcat模塊設計
- Tomcat實例
- Tomcat運行原理
- spring & servlet
- Tomcat啟動流程
- Tomcat支持的I/O模型
- Tomcat應用層協議
- Tomcat類加載機制
- Tomcat類加載器
- Tomcat類加載器層次
- Apache+Tomcat
- 序列化
- XML&JSON
- JSON
- JAVA原生序列化
- hessian
- 常見中間件
- Canal
- Databus
- ELK日志套件
- 數據庫連接池
- spring狀態機
- 常見解決方案
- 二維碼掃碼登錄原理
- 前沿技術
- Saas服務
- 服務網格(Service Mesh)
- 云原生
- 常見面試問題
- Redis持久化的幾種方式
- Redis的緩存失效策略
- 附錄
- 二將軍問題
- 常見問題定位步驟
- 如何快速熟悉新系統
- 制定技術方案套路
- NUMA陷阱