## 最大連續乘積子串
### 題目描述
給一個浮點數序列,取最大乘積連續子串的值,例如 -2.5,4,0,3,0.5,8,-1,則取出的最大乘積連續子串為3,0.5,8。也就是說,上述數組中,3 0.5 8這3個數的乘積3*0.5*8=12是最大的,而且是連續的。
### 分析與解法
此最大乘積連續子串與最大乘積子序列不同,請勿混淆,前者子串要求連續,后者子序列不要求連續。也就是說,最長公共子串(Longest CommonSubstring)和最長公共子序列(LongestCommon Subsequence,LCS)是:
* 子串(Substring)是串的一個連續的部分,
* 子序列(Subsequence)則是從不改變序列的順序,而從序列中去掉任意的元素而獲得的新序列;
更簡略地說,前者(子串)的字符的位置必須連續,后者(子序列LCS)則不必。比如字符串“ acdfg ”同“ akdfc ”的最長公共子串為“ df ”,而它們的最長公共子序列LCS是“ adf ”,LCS可以使用動態規劃法解決。
#### 解法一
或許,讀者初看此題,可能立馬會想到用最簡單粗暴的方式:兩個for循環直接輪詢。
```c
double maxProductSubstring(double *a, int length)
{
double maxResult = a[0];
for (int i = 0; i < length; i++)
{
double x = 1;
for (int j = i; j < length; j++)
{
x *= a[j];
if (x > maxResult)
{
maxResult = x;
}
}
}
return maxResult;
}
```
但這種蠻力的方法的時間復雜度為O(n^2),能否想辦法降低時間復雜度呢?
#### 解法二
考慮到乘積子序列中有正有負也還可能有0,我們可以把問題簡化成這樣:數組中找一個子序列,使得它的乘積最大;同時找一個子序列,使得它的乘積最小(負數的情況)。因為雖然我們只要一個最大積,但由于負數的存在,我們同時找這兩個乘積做起來反而方便。也就是說,不但記錄最大乘積,也要記錄最小乘積。
假設數組為a[],直接利用動態規劃來求解,考慮到可能存在負數的情況,我們用maxend來表示以a[i]結尾的最大連續子串的乘積值,用minend表示以a[i]結尾的最小的子串的乘積值,那么狀態轉移方程為:
```
maxend = max(max(maxend * a[i], minend * a[i]), a[i]);
minend = min(min(maxend * a[i], minend * a[i]), a[i]);
```
初始狀態為maxend = minend = a[0]。
參考代碼如下:
```cpp
double MaxProductSubstring(double *a, int length)
{
double maxEnd = a[0];
double minEnd = a[0];
double maxResult = a[0];
for (int i = 1; i < length; ++i)
{
double end1 = maxEnd * a[i], end2 = minEnd * a[i];
maxEnd = max(max(end1, end2), a[i]);
minEnd = min(min(end1, end2), a[i]);
maxResult = max(maxResult, maxEnd);
}
return maxResult;
}
```
動態規劃求解的方法一個for循環搞定,所以時間復雜度為O(n)。
### 舉一反三
1、給定一個長度為N的整數數組,只允許用乘法,不能用除法,計算任意(N-1)個數的組合中乘積最大的一組,并寫出算法的時間復雜度。
分析:我們可以把所有可能的(N-1)個數的組合找出來,分別計算它們的乘積,并比較大小。由于總共有N個(N-1)個數的組合,總的時間復雜度為O(N2),顯然這不是最好的解法。
- 程序員如何準備面試中的算法
- 第一部分 數據結構
- 第一章 字符串
- 1.0 本章導讀
- 1.1 旋轉字符串
- 1.2 字符串包含
- 1.3 字符串轉換成整數
- 1.4 回文判斷
- 1.5 最長回文子串
- 1.6 字符串的全排列
- 1.10 本章習題
- 第二章 數組
- 2.0 本章導讀
- 2.1 尋找最小的 k 個數
- 2.2 尋找和為定值的兩個數
- 2.3 尋找和為定值的多個數
- 2.4 最大連續子數組和
- 2.5 跳臺階
- 2.6 奇偶排序
- 2.7 荷蘭國旗
- 2.8 矩陣相乘
- 2.9 完美洗牌
- 2.15 本章習題
- 第三章 樹
- 3.0 本章導讀
- 3.1 紅黑樹
- 3.2 B樹
- 3.3 最近公共祖先LCA
- 3.10 本章習題
- 第二部分 算法心得
- 第四章 查找匹配
- 4.1 有序數組的查找
- 4.2 行列遞增矩陣的查找
- 4.3 出現次數超過一半的數字
- 第五章 動態規劃
- 5.0 本章導讀
- 5.1 最大連續乘積子串
- 5.2 字符串編輯距離
- 5.3 格子取數
- 5.4 交替字符串
- 5.10 本章習題
- 第三部分 綜合演練
- 第六章 海量數據處理
- 6.0 本章導讀
- 6.1 關聯式容器
- 6.2 分而治之
- 6.3 simhash算法
- 6.4 外排序
- 6.5 MapReduce
- 6.6 多層劃分
- 6.7 Bitmap
- 6.8 Bloom filter
- 6.9 Trie樹
- 6.10 數據庫
- 6.11 倒排索引
- 6.15 本章習題
- 第七章 機器學習
- 7.1 K 近鄰算法
- 7.2 支持向量機
- 附錄 更多題型
- 附錄A 語言基礎
- 附錄B 概率統計
- 附錄C 智力邏輯
- 附錄D 系統設計
- 附錄E 操作系統
- 附錄F 網絡協議
- sift算法
- sift算法的編譯與實現
- 教你一步一步用c語言實現sift算法、上
- 教你一步一步用c語言實現sift算法、下
- 其它
- 40億個數中快速查找
- hash表算法
- 一致性哈希算法
- 倒排索引關鍵詞不重復Hash編碼
- 傅里葉變換算法、上
- 傅里葉變換算法、下
- 后綴樹
- 基于給定的文檔生成倒排索引的編碼與實踐
- 搜索關鍵詞智能提示suggestion
- 最小操作數
- 最短摘要的生成
- 最長公共子序列
- 木塊砌墻原稿
- 附近地點搜索
- 隨機取出其中之一元素