# Trie樹(字典樹)
## 方法介紹
### 1.1、什么是Trie樹
Trie樹,即字典樹,又稱單詞查找樹或鍵樹,是一種樹形結構。典型應用是用于統計和排序大量的字符串(但不僅限于字符串),所以經常被搜索引擎系統用于文本詞頻統計。它的優點是最大限度地減少無謂的字符串比較,查詢效率比較高。
Trie的核心思想是空間換時間,利用字符串的公共前綴來降低查詢時間的開銷以達到提高效率的目的。
它有3個基本性質:
1. 根節點不包含字符,除根節點外每一個節點都只包含一個字符。
2. 從根節點到某一節點,路徑上經過的字符連接起來,為該節點對應的字符串。
3. 每個節點的所有子節點包含的字符都不相同。
### 1.2、樹的構建
咱們先來看一個問題:假如現在給你10萬個長度不超過10的單詞,對于每一個單詞,我們要判斷它出沒出現過,如果出現了,求第一次出現在第幾個位置。對于這個問題,我們該怎么解決呢?
如果我們用最傻的方法,對于每一個單詞,我們都要去查找它前面的單詞中是否有它。那么這個算法的復雜度就是O(n^2)。顯然對于10萬的范圍難以接受。
換個思路想:
- 假設我要查詢的單詞是abcd,那么在它前面的單詞中,以b,c,d,f之類開頭的顯然不必考慮,而只要找以a開頭的中是否存在abcd就可以了。
- 同樣的,在以a開頭中的單詞中,我們只要考慮以b作為第二個字母的,一次次縮小范圍和提高針對性,這樣一個樹的模型就漸漸清晰了。
即如果現在有b,abc,abd,bcd,abcd,efg,hii 這6個單詞,我們可以構建一棵如下圖所示的樹:

如上圖所示,對于每一個節點,從根遍歷到他的過程就是一個單詞,如果這個節點被標記為紅色,就表示這個單詞存在,否則不存在。
那么,對于一個單詞,只要順著他從根走到對應的節點,再看這個節點是否被標記為紅色就可以知道它是否出現過了。把這個節點標記為紅色,就相當于插入了這個單詞。
這樣一來我們查詢和插入可以一起完成,所用時間僅僅為單詞長度(在這個例子中,便是10)。這就是一棵trie樹。
我們可以看到,trie樹每一層的節點數是26^i級別的。所以為了節省空間,我們還可以用動態鏈表,或者用數組來模擬動態。而空間的花費,不會超過單詞數×單詞長度。
### 1.3、查詢
Trie樹是簡單但實用的數據結構,通常用于實現字典查詢。我們做即時響應用戶輸入的AJAX搜索框時,就是Trie開始。本質上,Trie是一顆存儲多個字符串的樹。相鄰節點間的邊代表一個字符,這樣樹的每條分支代表一則子串,而樹的葉節點則代表完整的字符串。和普通樹不同的地方是,相同的字符串前綴共享同一條分支。
下面,再舉一個例子。給出一組單詞,inn, int, at, age, adv, ant, 我們可以得到下面的Trie:

可以看出:
- 每條邊對應一個字母。
- 每個節點對應一項前綴。葉節點對應最長前綴,即單詞本身。
- 單詞inn與單詞int有共同的前綴“in”, 因此他們共享左邊的一條分支,root->i->in。同理,ate, age, adv, 和ant共享前綴"a",所以他們共享從根節點到節點"a"的邊。
查詢操縱非常簡單。比如要查找int,順著路徑i -> in -> int就找到了。
搭建Trie的基本算法也很簡單,無非是逐一把每則單詞的每個字母插入Trie。插入前先看前綴是否存在。如果存在,就共享,否則創建對應的節點和邊。比如要插入單詞add,就有下面幾步:
1. 考察前綴"a",發現邊a已經存在。于是順著邊a走到節點a。
2. 考察剩下的字符串"dd"的前綴"d",發現從節點a出發,已經有邊d存在。于是順著邊d走到節點ad
3. 考察最后一個字符"d",這下從節點ad出發沒有邊d了,于是創建節點ad的子節點add,并把邊ad->add標記為d。
## 問題實例
**1、一個文本文件,大約有一萬行,每行一個詞,要求統計出其中最頻繁出現的前10個詞,請給出思想,給出時間復雜度分析**
**提示**:用trie樹統計每個詞出現的次數,時間復雜度是O(n\*le)(le表示單詞的平均長度),然后是找出出現最頻繁的前10個詞。當然,也可以用堆來實現,時間復雜度是O(n\*lg10)。所以總的時間復雜度,是O(n\*le)與O(n\*lg10)中較大的哪一個。
**2、尋找熱門查詢**
**原題**:搜索引擎會通過日志文件把用戶每次檢索使用的所有檢索串都記錄下來,每個查詢串的長度為1-255字節。假設目前有一千萬個記錄,這些查詢串的重復讀比較高,雖然總數是1千萬,但是如果去除重復和,不超過3百萬個。一個查詢串的重復度越高,說明查詢它的用戶越多,也就越熱門。請你統計最熱門的10個查詢串,要求使用的內存不能超過1G。
**提示**:利用trie樹,關鍵字域存該查詢串出現的次數,沒有出現為0。最后用10個元素的最小推來對出現頻率進行排序。
- 程序員如何準備面試中的算法
- 第一部分 數據結構
- 第一章 字符串
- 1.0 本章導讀
- 1.1 旋轉字符串
- 1.2 字符串包含
- 1.3 字符串轉換成整數
- 1.4 回文判斷
- 1.5 最長回文子串
- 1.6 字符串的全排列
- 1.10 本章習題
- 第二章 數組
- 2.0 本章導讀
- 2.1 尋找最小的 k 個數
- 2.2 尋找和為定值的兩個數
- 2.3 尋找和為定值的多個數
- 2.4 最大連續子數組和
- 2.5 跳臺階
- 2.6 奇偶排序
- 2.7 荷蘭國旗
- 2.8 矩陣相乘
- 2.9 完美洗牌
- 2.15 本章習題
- 第三章 樹
- 3.0 本章導讀
- 3.1 紅黑樹
- 3.2 B樹
- 3.3 最近公共祖先LCA
- 3.10 本章習題
- 第二部分 算法心得
- 第四章 查找匹配
- 4.1 有序數組的查找
- 4.2 行列遞增矩陣的查找
- 4.3 出現次數超過一半的數字
- 第五章 動態規劃
- 5.0 本章導讀
- 5.1 最大連續乘積子串
- 5.2 字符串編輯距離
- 5.3 格子取數
- 5.4 交替字符串
- 5.10 本章習題
- 第三部分 綜合演練
- 第六章 海量數據處理
- 6.0 本章導讀
- 6.1 關聯式容器
- 6.2 分而治之
- 6.3 simhash算法
- 6.4 外排序
- 6.5 MapReduce
- 6.6 多層劃分
- 6.7 Bitmap
- 6.8 Bloom filter
- 6.9 Trie樹
- 6.10 數據庫
- 6.11 倒排索引
- 6.15 本章習題
- 第七章 機器學習
- 7.1 K 近鄰算法
- 7.2 支持向量機
- 附錄 更多題型
- 附錄A 語言基礎
- 附錄B 概率統計
- 附錄C 智力邏輯
- 附錄D 系統設計
- 附錄E 操作系統
- 附錄F 網絡協議
- sift算法
- sift算法的編譯與實現
- 教你一步一步用c語言實現sift算法、上
- 教你一步一步用c語言實現sift算法、下
- 其它
- 40億個數中快速查找
- hash表算法
- 一致性哈希算法
- 倒排索引關鍵詞不重復Hash編碼
- 傅里葉變換算法、上
- 傅里葉變換算法、下
- 后綴樹
- 基于給定的文檔生成倒排索引的編碼與實踐
- 搜索關鍵詞智能提示suggestion
- 最小操作數
- 最短摘要的生成
- 最長公共子序列
- 木塊砌墻原稿
- 附近地點搜索
- 隨機取出其中之一元素