##LinkedList簡介
LinkedList是基于雙向循環鏈表(從源碼中可以很容易看出)實現的,除了可以當作鏈表來操作外,它還可以當作棧,隊列和雙端隊列來使用。
LinkedList同樣是非線程安全的,只在單線程下適合使用。
LinkedList實現了Serializable接口,因此它支持序列化,能夠通過序列化傳輸,實現了Cloneable接口,能被克隆。
##LinkedList源碼剖析
LinkedList的源碼如下(加入了比較詳細的注釋)
```
package java.util;
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
// 鏈表的表頭,表頭不包含任何數據。Entry是個鏈表類數據結構。
private transient Entry<E> header = new Entry<E>(null, null, null);
// LinkedList中元素個數
private transient int size = 0;
// 默認構造函數:創建一個空的鏈表
public LinkedList() {
header.next = header.previous = header;
}
// 包含“集合”的構造函數:創建一個包含“集合”的LinkedList
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
// 獲取LinkedList的第一個元素
public E getFirst() {
if (size==0)
throw new NoSuchElementException();
// 鏈表的表頭header中不包含數據。
// 這里返回header所指下一個節點所包含的數據。
return header.next.element;
}
// 獲取LinkedList的最后一個元素
public E getLast() {
if (size==0)
throw new NoSuchElementException();
// 由于LinkedList是雙向鏈表;而表頭header不包含數據。
// 因而,這里返回表頭header的前一個節點所包含的數據。
return header.previous.element;
}
// 刪除LinkedList的第一個元素
public E removeFirst() {
return remove(header.next);
}
// 刪除LinkedList的最后一個元素
public E removeLast() {
return remove(header.previous);
}
// 將元素添加到LinkedList的起始位置
public void addFirst(E e) {
addBefore(e, header.next);
}
// 將元素添加到LinkedList的結束位置
public void addLast(E e) {
addBefore(e, header);
}
// 判斷LinkedList是否包含元素(o)
public boolean contains(Object o) {
return indexOf(o) != -1;
}
// 返回LinkedList的大小
public int size() {
return size;
}
// 將元素(E)添加到LinkedList中
public boolean add(E e) {
// 將節點(節點數據是e)添加到表頭(header)之前。
// 即,將節點添加到雙向鏈表的末端。
addBefore(e, header);
return true;
}
// 從LinkedList中刪除元素(o)
// 從鏈表開始查找,如存在元素(o)則刪除該元素并返回true;
// 否則,返回false。
public boolean remove(Object o) {
if (o==null) {
// 若o為null的刪除情況
for (Entry<E> e = header.next; e != header; e = e.next) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
// 若o不為null的刪除情況
for (Entry<E> e = header.next; e != header; e = e.next) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
// 將“集合(c)”添加到LinkedList中。
// 實際上,是從雙向鏈表的末尾開始,將“集合(c)”添加到雙向鏈表中。
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
// 從雙向鏈表的index開始,將“集合(c)”添加到雙向鏈表中。
public boolean addAll(int index, Collection<? extends E> c) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Object[] a = c.toArray();
// 獲取集合的長度
int numNew = a.length;
if (numNew==0)
return false;
modCount++;
// 設置“當前要插入節點的后一個節點”
Entry<E> successor = (index==size ? header : entry(index));
// 設置“當前要插入節點的前一個節點”
Entry<E> predecessor = successor.previous;
// 將集合(c)全部插入雙向鏈表中
for (int i=0; i<numNew; i++) {
Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
predecessor.next = e;
predecessor = e;
}
successor.previous = predecessor;
// 調整LinkedList的實際大小
size += numNew;
return true;
}
// 清空雙向鏈表
public void clear() {
Entry<E> e = header.next;
// 從表頭開始,逐個向后遍歷;對遍歷到的節點執行一下操作:
// (01) 設置前一個節點為null
// (02) 設置當前節點的內容為null
// (03) 設置后一個節點為“新的當前節點”
while (e != header) {
Entry<E> next = e.next;
e.next = e.previous = null;
e.element = null;
e = next;
}
header.next = header.previous = header;
// 設置大小為0
size = 0;
modCount++;
}
// 返回LinkedList指定位置的元素
public E get(int index) {
return entry(index).element;
}
// 設置index位置對應的節點的值為element
public E set(int index, E element) {
Entry<E> e = entry(index);
E oldVal = e.element;
e.element = element;
return oldVal;
}
// 在index前添加節點,且節點的值為element
public void add(int index, E element) {
addBefore(element, (index==size ? header : entry(index)));
}
// 刪除index位置的節點
public E remove(int index) {
return remove(entry(index));
}
// 獲取雙向鏈表中指定位置的節點
private Entry<E> entry(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Entry<E> e = header;
// 獲取index處的節點。
// 若index < 雙向鏈表長度的1/2,則從前先后查找;
// 否則,從后向前查找。
if (index < (size >> 1)) {
for (int i = 0; i <= index; i++)
e = e.next;
} else {
for (int i = size; i > index; i--)
e = e.previous;
}
return e;
}
// 從前向后查找,返回“值為對象(o)的節點對應的索引”
// 不存在就返回-1
public int indexOf(Object o) {
int index = 0;
if (o==null) {
for (Entry e = header.next; e != header; e = e.next) {
if (e.element==null)
return index;
index++;
}
} else {
for (Entry e = header.next; e != header; e = e.next) {
if (o.equals(e.element))
return index;
index++;
}
}
return -1;
}
// 從后向前查找,返回“值為對象(o)的節點對應的索引”
// 不存在就返回-1
public int lastIndexOf(Object o) {
int index = size;
if (o==null) {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (e.element==null)
return index;
}
} else {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (o.equals(e.element))
return index;
}
}
return -1;
}
// 返回第一個節點
// 若LinkedList的大小為0,則返回null
public E peek() {
if (size==0)
return null;
return getFirst();
}
// 返回第一個節點
// 若LinkedList的大小為0,則拋出異常
public E element() {
return getFirst();
}
// 刪除并返回第一個節點
// 若LinkedList的大小為0,則返回null
public E poll() {
if (size==0)
return null;
return removeFirst();
}
// 將e添加雙向鏈表末尾
public boolean offer(E e) {
return add(e);
}
// 將e添加雙向鏈表開頭
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
// 將e添加雙向鏈表末尾
public boolean offerLast(E e) {
addLast(e);
return true;
}
// 返回第一個節點
// 若LinkedList的大小為0,則返回null
public E peekFirst() {
if (size==0)
return null;
return getFirst();
}
// 返回最后一個節點
// 若LinkedList的大小為0,則返回null
public E peekLast() {
if (size==0)
return null;
return getLast();
}
// 刪除并返回第一個節點
// 若LinkedList的大小為0,則返回null
public E pollFirst() {
if (size==0)
return null;
return removeFirst();
}
// 刪除并返回最后一個節點
// 若LinkedList的大小為0,則返回null
public E pollLast() {
if (size==0)
return null;
return removeLast();
}
// 將e插入到雙向鏈表開頭
public void push(E e) {
addFirst(e);
}
// 刪除并返回第一個節點
public E pop() {
return removeFirst();
}
// 從LinkedList開始向后查找,刪除第一個值為元素(o)的節點
// 從鏈表開始查找,如存在節點的值為元素(o)的節點,則刪除該節點
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
// 從LinkedList末尾向前查找,刪除第一個值為元素(o)的節點
// 從鏈表開始查找,如存在節點的值為元素(o)的節點,則刪除該節點
public boolean removeLastOccurrence(Object o) {
if (o==null) {
for (Entry<E> e = header.previous; e != header; e = e.previous) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
for (Entry<E> e = header.previous; e != header; e = e.previous) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
// 返回“index到末尾的全部節點”對應的ListIterator對象(List迭代器)
public ListIterator<E> listIterator(int index) {
return new ListItr(index);
}
// List迭代器
private class ListItr implements ListIterator<E> {
// 上一次返回的節點
private Entry<E> lastReturned = header;
// 下一個節點
private Entry<E> next;
// 下一個節點對應的索引值
private int nextIndex;
// 期望的改變計數。用來實現fail-fast機制。
private int expectedModCount = modCount;
// 構造函數。
// 從index位置開始進行迭代
ListItr(int index) {
// index的有效性處理
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
// 若 “index 小于 ‘雙向鏈表長度的一半’”,則從第一個元素開始往后查找;
// 否則,從最后一個元素往前查找。
if (index < (size >> 1)) {
next = header.next;
for (nextIndex=0; nextIndex<index; nextIndex++)
next = next.next;
} else {
next = header;
for (nextIndex=size; nextIndex>index; nextIndex--)
next = next.previous;
}
}
// 是否存在下一個元素
public boolean hasNext() {
// 通過元素索引是否等于“雙向鏈表大小”來判斷是否達到最后。
return nextIndex != size;
}
// 獲取下一個元素
public E next() {
checkForComodification();
if (nextIndex == size)
throw new NoSuchElementException();
lastReturned = next;
// next指向鏈表的下一個元素
next = next.next;
nextIndex++;
return lastReturned.element;
}
// 是否存在上一個元素
public boolean hasPrevious() {
// 通過元素索引是否等于0,來判斷是否達到開頭。
return nextIndex != 0;
}
// 獲取上一個元素
public E previous() {
if (nextIndex == 0)
throw new NoSuchElementException();
// next指向鏈表的上一個元素
lastReturned = next = next.previous;
nextIndex--;
checkForComodification();
return lastReturned.element;
}
// 獲取下一個元素的索引
public int nextIndex() {
return nextIndex;
}
// 獲取上一個元素的索引
public int previousIndex() {
return nextIndex-1;
}
// 刪除當前元素。
// 刪除雙向鏈表中的當前節點
public void remove() {
checkForComodification();
Entry<E> lastNext = lastReturned.next;
try {
LinkedList.this.remove(lastReturned);
} catch (NoSuchElementException e) {
throw new IllegalStateException();
}
if (next==lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = header;
expectedModCount++;
}
// 設置當前節點為e
public void set(E e) {
if (lastReturned == header)
throw new IllegalStateException();
checkForComodification();
lastReturned.element = e;
}
// 將e添加到當前節點的前面
public void add(E e) {
checkForComodification();
lastReturned = header;
addBefore(e, next);
nextIndex++;
expectedModCount++;
}
// 判斷 “modCount和expectedModCount是否相等”,依次來實現fail-fast機制。
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
// 雙向鏈表的節點所對應的數據結構。
// 包含3部分:上一節點,下一節點,當前節點值。
private static class Entry<E> {
// 當前節點所包含的值
E element;
// 下一個節點
Entry<E> next;
// 上一個節點
Entry<E> previous;
/**
* 鏈表節點的構造函數。
* 參數說明:
* element —— 節點所包含的數據
* next —— 下一個節點
* previous —— 上一個節點
*/
Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}
// 將節點(節點數據是e)添加到entry節點之前。
private Entry<E> addBefore(E e, Entry<E> entry) {
// 新建節點newEntry,將newEntry插入到節點e之前;并且設置newEntry的數據是e
Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
// 修改LinkedList大小
size++;
// 修改LinkedList的修改統計數:用來實現fail-fast機制。
modCount++;
return newEntry;
}
// 將節點從鏈表中刪除
private E remove(Entry<E> e) {
if (e == header)
throw new NoSuchElementException();
E result = e.element;
e.previous.next = e.next;
e.next.previous = e.previous;
e.next = e.previous = null;
e.element = null;
size--;
modCount++;
return result;
}
// 反向迭代器
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
// 反向迭代器實現類。
private class DescendingIterator implements Iterator {
final ListItr itr = new ListItr(size());
// 反向迭代器是否下一個元素。
// 實際上是判斷雙向鏈表的當前節點是否達到開頭
public boolean hasNext() {
return itr.hasPrevious();
}
// 反向迭代器獲取下一個元素。
// 實際上是獲取雙向鏈表的前一個節點
public E next() {
return itr.previous();
}
// 刪除當前節點
public void remove() {
itr.remove();
}
}
// 返回LinkedList的Object[]數組
public Object[] toArray() {
// 新建Object[]數組
Object[] result = new Object[size];
int i = 0;
// 將鏈表中所有節點的數據都添加到Object[]數組中
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
return result;
}
// 返回LinkedList的模板數組。所謂模板數組,即可以將T設為任意的數據類型
public <T> T[] toArray(T[] a) {
// 若數組a的大小 < LinkedList的元素個數(意味著數組a不能容納LinkedList中全部元素)
// 則新建一個T[]數組,T[]的大小為LinkedList大小,并將該T[]賦值給a。
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
// 將鏈表中所有節點的數據都添加到數組a中
int i = 0;
Object[] result = a;
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
if (a.length > size)
a[size] = null;
return a;
}
// 克隆函數。返回LinkedList的克隆對象。
public Object clone() {
LinkedList<E> clone = null;
// 克隆一個LinkedList克隆對象
try {
clone = (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
// 新建LinkedList表頭節點
clone.header = new Entry<E>(null, null, null);
clone.header.next = clone.header.previous = clone.header;
clone.size = 0;
clone.modCount = 0;
// 將鏈表中所有節點的數據都添加到克隆對象中
for (Entry<E> e = header.next; e != header; e = e.next)
clone.add(e.element);
return clone;
}
// java.io.Serializable的寫入函數
// 將LinkedList的“容量,所有的元素值”都寫入到輸出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// 寫入“容量”
s.writeInt(size);
// 將鏈表中所有節點的數據都寫入到輸出流中
for (Entry e = header.next; e != header; e = e.next)
s.writeObject(e.element);
}
// java.io.Serializable的讀取函數:根據寫入方式反向讀出
// 先將LinkedList的“容量”讀出,然后將“所有的元素值”讀出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// 從輸入流中讀取“容量”
int size = s.readInt();
// 新建鏈表表頭節點
header = new Entry<E>(null, null, null);
header.next = header.previous = header;
// 從輸入流中將“所有的元素值”并逐個添加到鏈表中
for (int i=0; i<size; i++)
addBefore((E)s.readObject(), header);
}
}
```
##幾點總結
關于LinkedList的源碼,給出幾點比較重要的總結:
1、從源碼中很明顯可以看出,LinkedList的實現是基于雙向循環鏈表的,且頭結點中不存放數據,如下圖;

2、注意兩個不同的構造方法。無參構造方法直接建立一個僅包含head節點的空鏈表,包含Collection的構造方法,先調用無參構造方法建立一個空鏈表,然后將Collection中的數據加入到鏈表的尾部后面。
3、在查找和刪除某元素時,源碼中都劃分為該元素為null和不為null兩種情況來處理,LinkedList中允許元素為null。
4、LinkedList是基于鏈表實現的,因此不存在容量不足的問題,所以這里沒有擴容的方法。
5、注意源碼中的Entry<E> entry(int index)方法。該方法返回雙向鏈表中指定位置處的節點,而鏈表中是沒有下標索引的,要指定位置出的元素,就要遍歷該鏈表,從源碼的實現中,我們看到這里有一個加速動作。源碼中先將index與長度size的一半比較,如果index<size/2,就只從位置0往后遍歷到位置index處,而如果index>size/2,就只從位置size往前遍歷到位置index處。這樣可以減少一部分不必要的遍歷,從而提高一定的效率(實際上效率還是很低)。
6、注意鏈表類對應的數據結構Entry。如下;
```
// 雙向鏈表的節點所對應的數據結構。
// 包含3部分:上一節點,下一節點,當前節點值。
private static class Entry<E> {
// 當前節點所包含的值
E element;
// 下一個節點
Entry<E> next;
// 上一個節點
Entry<E> previous;
/**
* 鏈表節點的構造函數。
* 參數說明:
* element —— 節點所包含的數據
* next —— 下一個節點
* previous —— 上一個節點
*/
Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}
```
7、LinkedList是基于鏈表實現的,因此插入刪除效率高,查找效率低(雖然有一個加速動作)。
8、要注意源碼中還實現了棧和隊列的操作方法,因此也可以作為棧、隊列和雙端隊列來使用。
- JavaSE(Java基礎)
- Java基礎知識
- Java中的內存泄漏
- String源碼分析
- Java集合結構
- ArrayList源碼剖析
- HashMap源碼剖析
- Hashtable簡介
- Vector源碼剖析
- LinkedHashMap簡介
- LinkedList簡介
- JVM(Java虛擬機)
- JVM基礎知識
- JVM類加載機制
- Java內存區域與內存溢出
- 垃圾回收算法
- Java并發(JavaConcurrent)
- Java并發基礎知識
- 生產者和消費者問題
- Thread和Runnable實現多線程的區別
- 線程中斷
- 守護線程與阻塞線程的情況
- Synchronized
- 多線程環境中安全使用集合API
- 實現內存可見的兩種方法比較:加鎖和volatile變量
- 死鎖
- 可重入內置鎖
- 使用wait/notify/notifyAll實現線程間通信
- NIO
- 數據結構(DataStructure)
- 數組
- 棧和隊列
- Algorithm(算法)
- 排序
- 選擇排序
- 冒泡排序
- 快速排序
- 歸并排序
- 查找
- 順序查找
- 折半查找
- Network(網絡)
- TCP/UDP
- HTTP
- Socket
- OperatingSystem(操作系統)
- Linux系統的IPC
- android中常用設計模式
- 面向對象六大原則
- 單例模式
- Builder模式
- 原型模式
- 簡單工廠
- 策略模式
- 責任鏈模式
- 觀察者模式
- 代理模式
- 適配器模式
- 外觀模式
- Android(安卓面試點)
- Android基礎知識
- Android內存泄漏總結
- Handler內存泄漏分析及解決
- Android性能優化
- ListView詳解
- RecyclerView和ListView的異同
- AsyncTask源碼分析
- 插件化技術
- 自定義控件
- ANR問題
- Art和Dalvik的區別
- Android關于OOM的解決方案
- Fragment
- SurfaceView
- Android幾種進程
- APP啟動過程
- 圖片三級緩存
- Bitmap的分析與使用
- 熱修復的原理
- AIDL
- Binder機制
- Zygote和System進程的啟動過程
- Android中的MVC,MVP和MVVM
- MVP
- Android開機過程
- EventBus用法詳解
- 查漏補缺
- Git操作