### Java并發編程:線程間協作的兩種方式:wait、notify、notifyAll和Condition
* * * * *
轉載自: http://www.cnblogs.com/dolphin0520/p/3920385.html
在現實中,需要線程之間的協作。比如說最經典的生產者-消費者模型:當隊列滿時,生產者需要等待隊列有空間才能繼續往里面放入商品,而在等待的期間內,生產者必須釋放對臨界資源(即隊列)的占用權。因為生產者如果不釋放對臨界資源的占用權,那么消費者就無法消費隊列中的商品,就不會讓隊列有空間,那么生產者就會一直無限等待下去。因此,一般情況下,當隊列滿時,會讓生產者交出對臨界資源的占用權,并進入掛起狀態。然后等待消費者消費了商品,然后消費者通知生產者隊列有空間了。同樣地,當隊列空時,消費者也必須等待,等待生產者通知它隊列中有商品了。這種互相通信的過程就是線程間的協作。
今天我們就來探討一下Java中線程協作的最常見的兩種方式:利用Object.wait()、Object.notify()和使用Condition
以下是本文目錄大綱:
一.wait()、notify()和notifyAll()
二.Condition
三.生產者-消費者模型的實現
若有不正之處請多多諒解,并歡迎批評指正。
**一.wait()、notify()和notifyAll()**
wait()、notify()和notifyAll()是Object類中的方法:
~~~
/**
* Wakes up a single thread that is waiting on this object's
* monitor. If any threads are waiting on this object, one of them
* is chosen to be awakened. The choice is arbitrary and occurs at
* the discretion of the implementation. A thread waits on an object's
* monitor by calling one of the wait methods
*/
public final native void notify();
/**
* Wakes up all threads that are waiting on this object's monitor. A
* thread waits on an object's monitor by calling one of the
* wait methods.
*/
public final native void notifyAll();
/**
* Causes the current thread to wait until either another thread invokes the
* {@link java.lang.Object#notify()} method or the
* {@link java.lang.Object#notifyAll()} method for this object, or a
* specified amount of time has elapsed.
* <p>
* The current thread must own this object's monitor.
*/
public final native void wait(long timeout) throws InterruptedException;
~~~
從這三個方法的文字描述可以知道以下幾點信息:
1)wait()、notify()和notifyAll()方法是本地方法,并且為final方法,無法被重寫。
2)調用某個對象的wait()方法能讓當前線程阻塞,并且當前線程必須擁有此對象的monitor(即鎖)
3)調用某個對象的notify()方法能夠喚醒一個正在等待這個對象的monitor的線程,如果有多個線程都在等待這個對象的monitor,則只能喚醒其中一個線程;
4)調用notifyAll()方法能夠喚醒所有正在等待這個對象的monitor的線程;
有朋友可能會有疑問:為何這三個不是Thread類聲明中的方法,而是Object類中聲明的方法(當然由于Thread類繼承了Object類,所以Thread也可以調用者三個方法)?其實這個問題很簡單,由于每個對象都擁有monitor(即鎖),所以讓當前線程等待某個對象的鎖,當然應該通過這個對象來操作了。而不是用當前線程來操作,因為當前線程可能會等待多個線程的鎖,如果通過線程來操作,就非常復雜了。
上面已經提到,如果調用某個對象的wait()方法,當前線程必須擁有這個對象的monitor(即鎖),因此調用wait()方法必須在同步塊或者同步方法中進行(synchronized塊或者synchronized方法)。
調用某個對象的wait()方法,相當于讓當前線程交出此對象的monitor,然后進入等待狀態,等待后續再次獲得此對象的鎖(Thread類中的sleep方法使當前線程暫停執行一段時間,從而讓其他線程有機會繼續執行,但它并不釋放對象鎖);
notify()方法能夠喚醒一個正在等待該對象的monitor的線程,當有多個線程都在等待該對象的monitor的話,則只能喚醒其中一個線程,具體喚醒哪個線程則不得而知。
同樣地,調用某個對象的notify()方法,當前線程也必須擁有這個對象的monitor,因此調用notify()方法必須在同步塊或者同步方法中進行(synchronized塊或者synchronized方法)。
nofityAll()方法能夠喚醒所有正在等待該對象的monitor的線程,這一點與notify()方法是不同的。
這里要注意一點:notify()和notifyAll()方法只是喚醒等待該對象的monitor的線程,并不決定哪個線程能夠獲取到monitor。
舉個簡單的例子:假如有三個線程Thread1、Thread2和Thread3都在等待對象objectA的monitor,此時Thread4擁有對象objectA的monitor,當在Thread4中調用objectA.notify()方法之后,Thread1、Thread2和Thread3只有一個能被喚醒。注意,被喚醒不等于立刻就獲取了objectA的monitor。假若在Thread4中調用objectA.notifyAll()方法,則Thread1、Thread2和Thread3三個線程都會被喚醒,至于哪個線程接下來能夠獲取到objectA的monitor就具體依賴于操作系統的調度了。
上面尤其要注意一點,一個線程被喚醒不代表立即獲取了對象的monitor,只有等調用完notify()或者notifyAll()并退出synchronized塊,釋放對象鎖后,其余線程才可獲得鎖執行。
下面看一個例子就明白了:
~~~
public class Test {
public static Object object = new Object();
public static void main(String[] args) {
Thread1 thread1 = new Thread1();
Thread2 thread2 = new Thread2();
thread1.start();
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
thread2.start();
}
static class Thread1 extends Thread{
@Override
public void run() {
synchronized (object) {
try {
object.wait();
} catch (InterruptedException e) {
}
System.out.println("線程"+Thread.currentThread().getName()+"獲取到了鎖");
}
}
}
static class Thread2 extends Thread{
@Override
public void run() {
synchronized (object線程Thread-1調用了object.notify()
線程Thread-1釋放了鎖
線程Thread-0獲取到了鎖;
System.out.println("線程"+Thread.currentThread().getName()+"調用了object.notify()");
}
System.out.println("線程"+Thread.currentThread().getName()+"釋放了鎖");
}
}
}
~~~
無論運行多少次,運行結果必定是:
> 線程Thread-1調用了object.notify()
> 線程Thread-1釋放了鎖
> 線程Thread-0獲取到了鎖
- JavaSE(Java基礎)
- Java基礎知識
- Java中的內存泄漏
- String源碼分析
- Java集合結構
- ArrayList源碼剖析
- HashMap源碼剖析
- Hashtable簡介
- Vector源碼剖析
- LinkedHashMap簡介
- LinkedList簡介
- JVM(Java虛擬機)
- JVM基礎知識
- JVM類加載機制
- Java內存區域與內存溢出
- 垃圾回收算法
- Java并發(JavaConcurrent)
- Java并發基礎知識
- 生產者和消費者問題
- Thread和Runnable實現多線程的區別
- 線程中斷
- 守護線程與阻塞線程的情況
- Synchronized
- 多線程環境中安全使用集合API
- 實現內存可見的兩種方法比較:加鎖和volatile變量
- 死鎖
- 可重入內置鎖
- 使用wait/notify/notifyAll實現線程間通信
- NIO
- 數據結構(DataStructure)
- 數組
- 棧和隊列
- Algorithm(算法)
- 排序
- 選擇排序
- 冒泡排序
- 快速排序
- 歸并排序
- 查找
- 順序查找
- 折半查找
- Network(網絡)
- TCP/UDP
- HTTP
- Socket
- OperatingSystem(操作系統)
- Linux系統的IPC
- android中常用設計模式
- 面向對象六大原則
- 單例模式
- Builder模式
- 原型模式
- 簡單工廠
- 策略模式
- 責任鏈模式
- 觀察者模式
- 代理模式
- 適配器模式
- 外觀模式
- Android(安卓面試點)
- Android基礎知識
- Android內存泄漏總結
- Handler內存泄漏分析及解決
- Android性能優化
- ListView詳解
- RecyclerView和ListView的異同
- AsyncTask源碼分析
- 插件化技術
- 自定義控件
- ANR問題
- Art和Dalvik的區別
- Android關于OOM的解決方案
- Fragment
- SurfaceView
- Android幾種進程
- APP啟動過程
- 圖片三級緩存
- Bitmap的分析與使用
- 熱修復的原理
- AIDL
- Binder機制
- Zygote和System進程的啟動過程
- Android中的MVC,MVP和MVVM
- MVP
- Android開機過程
- EventBus用法詳解
- 查漏補缺
- Git操作