## 前言
很快我們就迎來了第二期,上一期我們主要講解了 RxJava 1.x 到 2.x 的變化概覽,相信各位熟練掌握RxJava 1.x的老司機們隨便看一下變化概覽就可以上手RxJava 2.x了,但為了滿足更廣大的年輕一代司機(未來也是老司機),在本節中,我們將學習RxJava 2.x 強大的操作符章節。
【注】以下所有操作符標題都可直接點擊進入官方doc查看。
## 正題
#### [Create](http://reactivex.io/documentation/operators/create.html)
`create` 操作符應該是最常見的操作符了,主要用于產生一個 `Obserable` 被觀察者對象,為了方便大家的認知,以后的教程中統一把被觀察者 `Observable` 稱為發射器(上游事件),觀察者 `Observer` 稱為接收器(下游事件)。

~~~
Observable.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
mRxOperatorsText.append("Observable emit 1" + "\n");
Log.e(TAG, "Observable emit 1" + "\n");
e.onNext(1);
mRxOperatorsText.append("Observable emit 2" + "\n");
Log.e(TAG, "Observable emit 2" + "\n");
e.onNext(2);
mRxOperatorsText.append("Observable emit 3" + "\n");
Log.e(TAG, "Observable emit 3" + "\n");
e.onNext(3);
e.onComplete();
mRxOperatorsText.append("Observable emit 4" + "\n");
Log.e(TAG, "Observable emit 4" + "\n" );
e.onNext(4);
}
}).subscribe(new Observer<Integer>() {
private int i;
private Disposable mDisposable;
@Override
public void onSubscribe(@NonNull Disposable d) {
mRxOperatorsText.append("onSubscribe : " + d.isDisposed() + "\n");
Log.e(TAG, "onSubscribe : " + d.isDisposed() + "\n" );
mDisposable = d;
}
@Override
public void onNext(@NonNull Integer integer) {
mRxOperatorsText.append("onNext : value : " + integer + "\n");
Log.e(TAG, "onNext : value : " + integer + "\n" );
i++;
if (i == 2) {
// 在RxJava 2.x 中,新增的Disposable可以做到切斷的操作,讓Observer觀察者不再接收上游事件
mDisposable.dispose();
mRxOperatorsText.append("onNext : isDisposable : " + mDisposable.isDisposed() + "\n");
Log.e(TAG, "onNext : isDisposable : " + mDisposable.isDisposed() + "\n");
}
}
@Override
public void onError(@NonNull Throwable e) {
mRxOperatorsText.append("onError : value : " + e.getMessage() + "\n");
Log.e(TAG, "onError : value : " + e.getMessage() + "\n" );
}
@Override
public void onComplete() {
mRxOperatorsText.append("onComplete" + "\n");
Log.e(TAG, "onComplete" + "\n" );
}
});
~~~
輸出:

需要注意的幾點是:
* 在發射事件中,我們在發射了數值 3 之后,直接調用了 `e.onComlete()`,雖然無法接收事件,但發送事件還是繼續的。
* 另外一個值得注意的點是,在 RxJava 2.x 中,可以看到發射事件方法相比 1.x 多了一個 throws Excetion,意味著我們做一些特定操作再也不用 try-catch 了。
* 并且 2.x 中有一個 `Disposable` 概念,這個東西可以直接調用切斷,可以看到,當它的 `isDisposed()` 返回為 false 的時候,接收器能正常接收事件,但當其為 true 的時候,接收器停止了接收。所以可以通過此參數動態控制接收事件了。
#### [Map](http://reactivex.io/documentation/operators/map.html)
`Map` 基本算是 RxJava 中一個最簡單的操作符了,熟悉 RxJava 1.x 的知道,它的作用是對發射時間發送的每一個事件應用一個函數,是的每一個事件都按照指定的函數去變化,而在 2.x 中它的作用幾乎一致。

~~~
Observable.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
e.onNext(1);
e.onNext(2);
e.onNext(3);
}
}).map(new Function<Integer, String>() {
@Override
public String apply(@NonNull Integer integer) throws Exception {
return "This is result " + integer;
}
}).subscribe(new Consumer<String>() {
@Override
public void accept(@NonNull String s) throws Exception {
mRxOperatorsText.append("accept : " + s +"\n");
Log.e(TAG, "accept : " + s +"\n" );
}
});
~~~
輸出:

是的,`map` 基本作用就是將一個 `Observable` 通過某種函數關系,轉換為另一種 `Observable`,上面例子中就是把我們的 `Integer` 數據變成了 `String` 類型。從Log日志顯而易見。
#### [Zip](http://reactivex.io/documentation/operators/zip.html)
`zip` 專用于合并事件,該合并不是連接(連接操作符后面會說),而是兩兩配對,也就意味著,最終配對出的 `Observable` 發射事件數目只和少的那個相同。
~~~
Observable.zip(getStringObservable(), getIntegerObservable(), new BiFunction<String, Integer, String>() {
@Override
public String apply(@NonNull String s, @NonNull Integer integer) throws Exception {
return s + integer;
}
}).subscribe(new Consumer<String>() {
@Override
public void accept(@NonNull String s) throws Exception {
mRxOperatorsText.append("zip : accept : " + s + "\n");
Log.e(TAG, "zip : accept : " + s + "\n");
}
});
~~~
~~~
private Observable<String> getStringObservable() {
return Observable.create(new ObservableOnSubscribe<String>() {
@Override
public void subscribe(@NonNull ObservableEmitter<String> e) throws Exception {
if (!e.isDisposed()) {
e.onNext("A");
mRxOperatorsText.append("String emit : A \n");
Log.e(TAG, "String emit : A \n");
e.onNext("B");
mRxOperatorsText.append("String emit : B \n");
Log.e(TAG, "String emit : B \n");
e.onNext("C");
mRxOperatorsText.append("String emit : C \n");
Log.e(TAG, "String emit : C \n");
}
}
});
}
private Observable<Integer> getIntegerObservable() {
return Observable.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
if (!e.isDisposed()) {
e.onNext(1);
mRxOperatorsText.append("Integer emit : 1 \n");
Log.e(TAG, "Integer emit : 1 \n");
e.onNext(2);
mRxOperatorsText.append("Integer emit : 2 \n");
Log.e(TAG, "Integer emit : 2 \n");
e.onNext(3);
mRxOperatorsText.append("Integer emit : 3 \n");
Log.e(TAG, "Integer emit : 3 \n");
e.onNext(4);
mRxOperatorsText.append("Integer emit : 4 \n");
Log.e(TAG, "Integer emit : 4 \n");
e.onNext(5);
mRxOperatorsText.append("Integer emit : 5 \n");
Log.e(TAG, "Integer emit : 5 \n");
}
}
});
}
~~~
輸出:

需要注意的是:
* `zip` 組合事件的過程就是分別從發射器 A 和發射器 B 各取出一個事件來組合,并且一個事件只能被使用一次,組合的順序是嚴格按照事件發送的順序來進行的,所以上面截圖中,可以看到,1 永遠是和 A 結合的,2 永遠是和 B 結合的。
* 最終接收器收到的事件數量是和發送器發送事件最少的那個發送器的發送事件數目相同,所以如截圖中,5 很孤單,沒有人愿意和它交往,孤獨終老的單身狗。
#### [Concat](http://reactivex.io/documentation/operators/concat.html)
對于單一的把兩個發射器連接成一個發射器,雖然 `zip` 不能完成,但我們還是可以自力更生,官方提供的 `concat` 讓我們的問題得到了完美解決。

~~~
Observable.concat(Observable.just(1,2,3), Observable.just(4,5,6))
.subscribe(new Consumer<Integer>() {
@Override
public void accept(@NonNull Integer integer) throws Exception {
mRxOperatorsText.append("concat : "+ integer + "\n");
Log.e(TAG, "concat : "+ integer + "\n" );
}
});
~~~
輸出:

如圖,可以看到。發射器 B 把自己的三個孩子送給了發射器 A,讓他們組合成了一個新的發射器,非常懂事的孩子,有條不紊的排序接收。
#### [FlatMap](http://reactivex.io/documentation/operators/flatmap.html)
`FlatMap` 是一個很有趣的東西,我堅信你在實際開發中會經常用到。它可以把一個發射器 `Observable` 通過某種方法轉換為多個 `Observables`,然后再把這些分散的 `Observables`裝進一個單一的發射器 `Observable`。但有個需要注意的是,`flatMap` 并不能保證事件的順序,如果需要保證,需要用到我們下面要講的 `ConcatMap`。

~~~
Observable.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
e.onNext(1);
e.onNext(2);
e.onNext(3);
}
}).flatMap(new Function<Integer, ObservableSource<String>>() {
@Override
public ObservableSource<String> apply(@NonNull Integer integer) throws Exception {
List<String> list = new ArrayList<>();
for (int i = 0; i < 3; i++) {
list.add("I am value " + integer);
}
int delayTime = (int) (1 + Math.random() * 10);
return Observable.fromIterable(list).delay(delayTime, TimeUnit.MILLISECONDS);
}
}).subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer<String>() {
@Override
public void accept(@NonNull String s) throws Exception {
Log.e(TAG, "flatMap : accept : " + s + "\n");
mRxOperatorsText.append("flatMap : accept : " + s + "\n");
}
});
~~~
輸出:

一切都如我們預期中的有意思,為了區分 `concatMap`(下一個會講),我在代碼中特意動了一點小手腳,我采用一個隨機數,生成一個時間,然后通過 `delay`(后面會講)操作符,做一個小延時操作,而查看 Log 日志也確認驗證了我們上面的說法,它是無序的。
#### [concatMap](http://reactivex.io/documentation/operators/flatmap.html)
上面其實就說了,`concatMap` 與 `FlatMap` 的唯一區別就是 `concatMap` 保證了順序,所以,我們就直接把 `flatMap` 替換為 `concatMap` 驗證吧。
~~~
Observable.create(new ObservableOnSubscribe<Integer>() {
@Override
public void subscribe(@NonNull ObservableEmitter<Integer> e) throws Exception {
e.onNext(1);
e.onNext(2);
e.onNext(3);
}
}).concatMap(new Function<Integer, ObservableSource<String>>() {
@Override
public ObservableSource<String> apply(@NonNull Integer integer) throws Exception {
List<String> list = new ArrayList<>();
for (int i = 0; i < 3; i++) {
list.add("I am value " + integer);
}
int delayTime = (int) (1 + Math.random() * 10);
return Observable.fromIterable(list).delay(delayTime, TimeUnit.MILLISECONDS);
}
}).subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer<String>() {
@Override
public void accept(@NonNull String s) throws Exception {
Log.e(TAG, "flatMap : accept : " + s + "\n");
mRxOperatorsText.append("flatMap : accept : " + s + "\n");
}
});
~~~
輸出:

結果的確和我們預想的一樣。
## 寫在最后
好了,這一節就先介紹到這里,下一節我們將學習其它的一些操作符,在操作符講完后再帶大家進入實際情景,希望持續關注,[代碼傳送門](https://github.com/nanchen2251/RxJava2Examples)。
作者:南塵2251
鏈接:http://www.jianshu.com/p/b39afa92807e
來源:簡書
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。
- 0-發現
- AndroidInterview-Q-A
- Android能讓你少走彎路的干貨整理
- LearningNotes
- temp
- temp11
- 部分地址
- 0-待辦任務
- 待補充列表
- 0-未分類
- AndroidView事件分發與滑動沖突處理
- Spannable
- 事件分發機制詳解
- 1-Java
- 1-Java-01基礎
- 未歸檔
- 你應該知道的JDK知識
- 集合框架
- 1-Java-04合集
- Java之旅0
- Java之旅
- JAVA之旅01
- JAVA之旅02
- JAVA之旅03
- JAVA之旅04
- JAVA之旅05
- JAVA之旅06
- JAVA之旅07
- JAVA之旅08
- JAVA之旅09
- java之旅1
- JAVA之旅10
- JAVA之旅11
- JAVA之旅12
- JAVA之旅13
- JAVA之旅14
- JAVA之旅15
- JAVA之旅16
- JAVA之旅17
- JAVA之旅18
- JAVA之旅19
- java之旅2
- JAVA之旅20
- JAVA之旅21
- JAVA之旅22
- JAVA之旅23
- JAVA之旅24
- JAVA之旅25
- JAVA之旅26
- JAVA之旅27
- JAVA之旅28
- JAVA之旅29
- java之旅3
- JAVA之旅30
- JAVA之旅31
- JAVA之旅32
- JAVA之旅33
- JAVA之旅34
- JAVA之旅35
- 1-Java-05辨析
- HashMapArrayMap
- Java8新特性
- Java8接口默認方法
- 圖解HashMap(1)
- 圖解HashMap(2)
- 2-Android
- 2-Android-1-基礎
- View繪制流程
- 事件分發
- AndroidView的事件分發機制和滑動沖突解決
- 自定義View基礎
- 1-安卓自定義View基礎-坐標系
- 2-安卓自定義View基礎-角度弧度
- 3-安卓自定義View基礎-顏色
- 自定義View進階
- 1-安卓自定義View進階-分類和流程
- 10-安卓自定義View進階-Matrix詳解
- 11-安卓自定義View進階-MatrixCamera
- 12-安卓自定義View進階-事件分發機制原理
- 13-安卓自定義View進階-事件分發機制詳解
- 14-安卓自定義View進階-MotionEvent詳解
- 15-安卓自定義View進階-特殊形狀控件事件處理方案
- 16-安卓自定義View進階-多點觸控詳解
- 17-安卓自定義View進階-手勢檢測GestureDetector
- 2-安卓自定義View進階-繪制基本圖形
- 3-安卓自定義View進階-畫布操作
- 4-安卓自定義View進階-圖片文字
- 5-安卓自定義View進階-Path基本操作
- 6-安卓自定義View進階-貝塞爾曲線
- 7-安卓自定義View進階-Path完結篇偽
- 8-安卓自定義View進階-Path玩出花樣PathMeasure
- 9-安卓自定義View進階-Matrix原理
- 通用類介紹
- Application
- 2-Android-2-使用
- 2-Android-02控件
- ViewGroup
- ConstraintLayout
- CoordinatorLayout
- 2-Android-03三方使用
- Dagger2
- Dagger2圖文完全教程
- Dagger2最清晰的使用教程
- Dagger2讓你愛不釋手-終結篇
- Dagger2讓你愛不釋手-重點概念講解、融合篇
- dagger2讓你愛不釋手:基礎依賴注入框架篇
- 閱讀筆記
- Glide
- Google推薦的圖片加載庫Glide:最新版使用指南(含新特性)
- rxjava
- 這可能是最好的RxJava2.x入門教程完結版
- 這可能是最好的RxJava2.x入門教程(一)
- 這可能是最好的RxJava2.x入門教程(三)
- 這可能是最好的RxJava2.x入門教程(二)
- 這可能是最好的RxJava2.x入門教程(五)
- 這可能是最好的RxJava2.x入門教程(四)
- 2-Android-3-優化
- 優化概況
- 各種優化
- Android端秒開優化
- apk大小優化
- 內存分析
- 混淆
- 2-Android-4-工具
- adb命令
- 一鍵分析Android的BugReport
- 版本控制
- git
- git章節簡述
- 2-Android-5-源碼
- HandlerThread 源碼分析
- IntentService的使用和源碼分析
- 2-Android-9-辨析
- LRU算法
- 什么是Bitmap
- 常見圖片壓縮方式
- 3-Kotlin
- Kotlin使用筆記1-草稿
- Kotlin使用筆記2
- kotlin特性草稿
- Kotlin草稿-Delegation
- Kotlin草稿-Field
- Kotlin草稿-object
- 4-JavaScript
- 5-Python
- 6-Other
- Git
- Gradle
- Android中ProGuard配置和總結
- gradle使用筆記
- Nexus私服搭建
- 編譯提速最佳實踐
- 7-設計模式與架構
- 組件化
- 組件化探索(OKR)
- 1-參考列表
- 2-1-組件化概述
- 2-2-gradle配置
- 2-3-代碼編寫
- 2-4-常見問題
- 2-9-值得一讀
- 8-數據結構與算法
- 0臨時文件
- 漢諾塔
- 8-數據-1數據結構
- HashMap
- HashMap、Hashtable、HashSet 和 ConcurrentHashMap 的比較
- 遲到一年HashMap解讀
- 8-數據-2算法
- 1個就夠了
- Java常用排序算法(必須掌握的8大排序算法)
- 常用排序算法總結(性能+代碼)
- 必須知道的八大種排序算法(java實現)
- 9-職業
- 閱讀
- 書單
- 面試
- 面試-01-java
- Java面試題全集駱昊(上)
- Java面試題全集駱昊(下)
- Java面試題全集駱昊(中)
- 面試-02-android
- 40道Android面試題
- 面試-03-開源源碼
- Android圖片加載框架最全解析(二),從源碼的角度理解Glide的執行流程
- 面試-07-設計模式
- 面試-08-算法
- 面試-09-其他
- SUMMARY
- 版權說明
- temp111