出自
> [深入理解Java內存模型(六)——final](http://www.infoq.com/cn/articles/java-memory-model-6)
[TOC=1,2]
與前面介紹的鎖和volatile相比較,對final域的讀和寫更像是普通的變量訪問。對于final域,編譯器和處理器要遵守兩個重排序規則:
1. 在構造函數內對一個final域的寫入,與隨后把這個被構造對象的引用賦值給一個引用變量,這兩個操作之間不能重排序。
2. 初次讀一個包含final域的對象的引用,與隨后初次讀這個final域,這兩個操作之間不能重排序。
下面,我們通過一些示例性的代碼來分別說明這兩個規則:
~~~
public class FinalExample {
int i; //普通變量
final int j; //final變量
static FinalExample obj;
public void FinalExample () { //構造函數
i = 1; //寫普通域
j = 2; //寫final域
}
public static void writer () { //寫線程A執行
obj = new FinalExample ();
}
public static void reader () { //讀線程B執行
FinalExample object = obj; //讀對象引用
int a = object.i; //讀普通域
int b = object.j; //讀final域
}
}
~~~
這里假設一個線程A執行writer ()方法,隨后另一個線程B執行reader ()方法。下面我們通過這兩個線程的交互來說明這兩個規則。
## 寫final域的重排序規則
寫final域的重排序規則禁止把final域的寫重排序到構造函數之外。這個規則的實現包含下面2個方面:
* JMM禁止編譯器把final域的寫重排序到構造函數之外。
* 編譯器會在final域的寫之后,構造函數return之前,插入一個StoreStore屏障。這個屏障禁止處理器把final域的寫重排序到構造函數之外。
現在讓我們分析writer ()方法。writer ()方法只包含一行代碼:finalExample = new FinalExample ()。這行代碼包含兩個步驟:
1. 構造一個FinalExample類型的對象;
2. 把這個對象的引用賦值給引用變量obj。
假設線程B讀對象引用與讀對象的成員域之間沒有重排序(馬上會說明為什么需要這個假設),下圖是一種可能的執行時序:

在上圖中,寫普通域的操作被編譯器重排序到了構造函數之外,讀線程B錯誤的讀取了普通變量i初始化之前的值。而寫final域的操作,被寫final域的重排序規則“限定”在了構造函數之內,讀線程B正確的讀取了final變量初始化之后的值。
寫final域的重排序規則可以確保:在對象引用為任意線程可見之前,對象的final域已經被正確初始化過了,而普通域不具有這個保障。以上圖為例,在讀線程B“看到”對象引用obj時,很可能obj對象還沒有構造完成(對普通域i的寫操作被重排序到構造函數外,此時初始值2還沒有寫入普通域i)。
## 讀final域的重排序規則
讀final域的重排序規則如下:
* 在一個線程中,初次讀對象引用與初次讀該對象包含的final域,JMM禁止處理器重排序這兩個操作(注意,這個規則僅僅針對處理器)。編譯器會在讀final域操作的前面插入一個LoadLoad屏障。
初次讀對象引用與初次讀該對象包含的final域,這兩個操作之間存在間接依賴關系。由于編譯器遵守間接依賴關系,因此編譯器不會重排序這兩個操作。大多數處理器也會遵守間接依賴,大多數處理器也不會重排序這兩個操作。但有少數處理器允許對存在間接依賴關系的操作做重排序(比如alpha處理器),這個規則就是專門用來針對這種處理器。
reader()方法包含三個操作:
1. 初次讀引用變量obj;
2. 初次讀引用變量obj指向對象的普通域j。
3. 初次讀引用變量obj指向對象的final域i。
現在我們假設寫線程A沒有發生任何重排序,同時程序在不遵守間接依賴的處理器上執行,下面是一種可能的執行時序:

在上圖中,讀對象的普通域的操作被處理器重排序到讀對象引用之前。讀普通域時,該域還沒有被寫線程A寫入,這是一個錯誤的讀取操作。而讀final域的重排序規則會把讀對象final域的操作“限定”在讀對象引用之后,此時該final域已經被A線程初始化過了,這是一個正確的讀取操作。
讀final域的重排序規則可以確保:在讀一個對象的final域之前,一定會先讀包含這個final域的對象的引用。在這個示例程序中,如果該引用不為null,那么引用對象的final域一定已經被A線程初始化過了。
## 如果final域是引用類型
上面我們看到的final域是基礎數據類型,下面讓我們看看如果final域是引用類型,將會有什么效果?
請看下列示例代碼:
~~~
public class FinalReferenceExample {
final int[] intArray; //final是引用類型
static FinalReferenceExample obj;
public FinalReferenceExample () { //構造函數
intArray = new int[1]; //1
intArray[0] = 1; //2
}
public static void writerOne () { //寫線程A執行
obj = new FinalReferenceExample (); //3
}
public static void writerTwo () { //寫線程B執行
obj.intArray[0] = 2; //4
}
public static void reader () { //讀線程C執行
if (obj != null) { //5
int temp1 = obj.intArray[0]; //6
}
}
}
~~~
這里final域為一個引用類型,它引用一個int型的數組對象。對于引用類型,寫final域的重排序規則對編譯器和處理器增加了如下約束:
1. 在構造函數內對一個final引用的對象的成員域的寫入,與隨后在構造函數外把這個被構造對象的引用賦值給一個引用變量,這兩個操作之間不能重排序。
對上面的示例程序,我們假設首先線程A執行writerOne()方法,執行完后線程B執行writerTwo()方法,執行完后線程C執行reader ()方法。下面是一種可能的線程執行時序:

在上圖中,1是對final域的寫入,2是對這個final域引用的對象的成員域的寫入,3是把被構造的對象的引用賦值給某個引用變量。這里除了前面提到的1不能和3重排序外,2和3也不能重排序。
JMM可以確保讀線程C至少能看到寫線程A在構造函數中對final引用對象的成員域的寫入。即C至少能看到數組下標0的值為1。而寫線程B對數組元素的寫入,讀線程C可能看的到,也可能看不到。JMM不保證線程B的寫入對讀線程C可見,因為寫線程B和讀線程C之間存在數據競爭,此時的執行結果不可預知。
如果想要確保讀線程C看到寫線程B對數組元素的寫入,寫線程B和讀線程C之間需要使用同步原語(lock或volatile)來確保內存可見性。
## 為什么final引用不能從構造函數內“逸出”
前面我們提到過,寫final域的重排序規則可以確保:在引用變量為任意線程可見之前,該引用變量指向的對象的final域已經在構造函數中被正確初始化過了。其實要得到這個效果,還需要一個保證:在構造函數內部,不能讓這個被構造對象的引用為其他線程可見,也就是對象引用不能在構造函數中“逸出”。為了說明問題,讓我們來看下面示例代碼:
~~~
public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj;
public FinalReferenceEscapeExample () {
i = 1; //1寫final域
obj = this; //2 this引用在此“逸出”
}
public static void writer() {
new FinalReferenceEscapeExample ();
}
public static void reader {
if (obj != null) { //3
int temp = obj.i; //4
}
}
}
~~~
假設一個線程A執行writer()方法,另一個線程B執行reader()方法。這里的操作2使得對象還未完成構造前就為線程B可見。即使這里的操作2是構造函數的最后一步,且即使在程序中操作2排在操作1后面,執行read()方法的線程仍然可能無法看到final域被初始化后的值,因為這里的操作1和操作2之間可能被重排序。實際的執行時序可能如下圖所示:

從上圖我們可以看出:在構造函數返回前,被構造對象的引用不能為其他線程可見,因為此時的final域可能還沒有被初始化。在構造函數返回后,任意線程都將保證能看到final域正確初始化之后的值。
## final語義在處理器中的實現
現在我們以x86處理器為例,說明final語義在處理器中的具體實現。
上面我們提到,寫final域的重排序規則會要求譯編器在final域的寫之后,構造函數return之前,插入一個StoreStore障屏。讀final域的重排序規則要求編譯器在讀final域的操作前面插入一個LoadLoad屏障。
由于x86處理器不會對寫-寫操作做重排序,所以在x86處理器中,寫final域需要的StoreStore障屏會被省略掉。同樣,由于x86處理器不會對存在間接依賴關系的操作做重排序,所以在x86處理器中,讀final域需要的LoadLoad屏障也會被省略掉。也就是說在x86處理器中,final域的讀/寫不會插入任何內存屏障!
## JSR-133為什么要增強final的語義
在舊的Java內存模型中 ,最嚴重的一個缺陷就是線程可能看到final域的值會改變。比如,一個線程當前看到一個整形final域的值為0(還未初始化之前的默認值),過一段時間之后這個線程再去讀這個final域的值時,卻發現值變為了1(被某個線程初始化之后的值)。最常見的例子就是在舊的Java內存模型中,String的值可能會改變(參考文獻2中有一個具體的例子,感興趣的讀者可以自行參考,這里就不贅述了)。
為了修補這個漏洞,JSR-133專家組增強了final的語義。通過為final域增加寫和讀重排序規則,可以為java程序員提供初始化安全保證:只要對象是正確構造的(被構造對象的引用在構造函數中沒有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保證任意線程都能看到這個final域在構造函數中被初始化之后的值。
## 參考文獻
1. [?Java Concurrency in Practice](http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601/ref=pd_sim_b_1)
2. [?JSR 133 (Java Memory Model) FAQ](http://www.cs.umd.edu/users/pugh/java/memoryModel/jsr-133-faq.html)
3. [?Java Concurrency in Practice](http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601/ref=pd_sim_b_1)
4. [?The JSR-133 Cookbook for Compiler Writers](http://gee.cs.oswego.edu/dl/jmm/cookbook.html)
[Intel? 64 and IA-32 ArchitecturesvSoftware Developer’s Manual Volume 3A: System Programming Guide, Part 1](http://download.intel.com/products/processor/manual/253668.pdf)
## 關于作者
程曉明,Java軟件工程師,國家認證的系統分析師、信息項目管理師。專注于并發編程,就職于富士通南大。個人郵箱:[asst2003@163.com](mailto:asst2003@163.com)。
- JVM
- 深入理解Java內存模型
- 深入理解Java內存模型(一)——基礎
- 深入理解Java內存模型(二)——重排序
- 深入理解Java內存模型(三)——順序一致性
- 深入理解Java內存模型(四)——volatile
- 深入理解Java內存模型(五)——鎖
- 深入理解Java內存模型(六)——final
- 深入理解Java內存模型(七)——總結
- Java內存模型
- Java內存模型2
- 堆內內存還是堆外內存?
- JVM內存配置詳解
- Java內存分配全面淺析
- 深入Java核心 Java內存分配原理精講
- jvm常量池
- JVM調優總結
- JVM調優總結(一)-- 一些概念
- JVM調優總結(二)-一些概念
- VM調優總結(三)-基本垃圾回收算法
- JVM調優總結(四)-垃圾回收面臨的問題
- JVM調優總結(五)-分代垃圾回收詳述1
- JVM調優總結(六)-分代垃圾回收詳述2
- JVM調優總結(七)-典型配置舉例1
- JVM調優總結(八)-典型配置舉例2
- JVM調優總結(九)-新一代的垃圾回收算法
- JVM調優總結(十)-調優方法
- 基礎
- Java 征途:行者的地圖
- Java程序員應該知道的10個面向對象理論
- Java泛型總結
- 序列化與反序列化
- 通過反編譯深入理解Java String及intern
- android 加固防止反編譯-重新打包
- volatile
- 正確使用 Volatile 變量
- 異常
- 深入理解java異常處理機制
- Java異常處理的10個最佳實踐
- Java異常處理手冊和最佳實踐
- Java提高篇——對象克隆(復制)
- Java中如何克隆集合——ArrayList和HashSet深拷貝
- Java中hashCode的作用
- Java提高篇之hashCode
- 常見正則表達式
- 類
- 理解java類加載器以及ClassLoader類
- 深入探討 Java 類加載器
- 類加載器的工作原理
- java反射
- 集合
- HashMap的工作原理
- ConcurrentHashMap之實現細節
- java.util.concurrent 之ConcurrentHashMap 源碼分析
- HashMap的實現原理和底層數據結構
- 線程
- 關于Java并發編程的總結和思考
- 40個Java多線程問題總結
- Java中的多線程你只要看這一篇就夠了
- Java多線程干貨系列(1):Java多線程基礎
- Java非阻塞算法簡介
- Java并發的四種風味:Thread、Executor、ForkJoin和Actor
- Java中不同的并發實現的性能比較
- JAVA CAS原理深度分析
- 多個線程之間共享數據的方式
- Java并發編程
- Java并發編程(1):可重入內置鎖
- Java并發編程(2):線程中斷(含代碼)
- Java并發編程(3):線程掛起、恢復與終止的正確方法(含代碼)
- Java并發編程(4):守護線程與線程阻塞的四種情況
- Java并發編程(5):volatile變量修飾符—意料之外的問題(含代碼)
- Java并發編程(6):Runnable和Thread實現多線程的區別(含代碼)
- Java并發編程(7):使用synchronized獲取互斥鎖的幾點說明
- Java并發編程(8):多線程環境中安全使用集合API(含代碼)
- Java并發編程(9):死鎖(含代碼)
- Java并發編程(10):使用wait/notify/notifyAll實現線程間通信的幾點重要說明
- java并發編程-II
- Java多線程基礎:進程和線程之由來
- Java并發編程:如何創建線程?
- Java并發編程:Thread類的使用
- Java并發編程:synchronized
- Java并發編程:Lock
- Java并發編程:volatile關鍵字解析
- Java并發編程:深入剖析ThreadLocal
- Java并發編程:CountDownLatch、CyclicBarrier和Semaphore
- Java并發編程:線程間協作的兩種方式:wait、notify、notifyAll和Condition
- Synchronized與Lock
- JVM底層又是如何實現synchronized的
- Java synchronized詳解
- synchronized 與 Lock 的那點事
- 深入研究 Java Synchronize 和 Lock 的區別與用法
- JAVA編程中的鎖機制詳解
- Java中的鎖
- TreadLocal
- 深入JDK源碼之ThreadLocal類
- 聊一聊ThreadLocal
- ThreadLocal
- ThreadLocal的內存泄露
- 多線程設計模式
- Java多線程編程中Future模式的詳解
- 原子操作(CAS)
- [譯]Java中Wait、Sleep和Yield方法的區別
- 線程池
- 如何合理地估算線程池大小?
- JAVA線程池中隊列與池大小的關系
- Java四種線程池的使用
- 深入理解Java之線程池
- java并發編程III
- Java 8并發工具包漫游指南
- 聊聊并發
- 聊聊并發(一)——深入分析Volatile的實現原理
- 聊聊并發(二)——Java SE1.6中的Synchronized
- 文件
- 網絡
- index
- 內存文章索引
- 基礎文章索引
- 線程文章索引
- 網絡文章索引
- IOC
- 設計模式文章索引
- 面試
- Java常量池詳解之一道比較蛋疼的面試題
- 近5年133個Java面試問題列表
- Java工程師成神之路
- Java字符串問題Top10
- 設計模式
- Java:單例模式的七種寫法
- Java 利用枚舉實現單例模式
- 常用jar
- HttpClient和HtmlUnit的比較總結
- IO
- NIO
- NIO入門
- 注解
- Java Annotation認知(包括框架圖、詳細介紹、示例說明)