<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                [Java并發編程:Lock](http://www.cnblogs.com/dolphin0520/p/3923167.html) [TOC=1,3] 在上一篇文章中我們講到了如何使用關鍵字synchronized來實現同步訪問。本文我們繼續來探討這個問題,從Java 5之后,在java.util.concurrent.locks包下提供了另外一種方式來實現同步訪問,那就是Lock。   也許有朋友會問,既然都可以通過synchronized來實現同步訪問了,那么為什么還需要提供Lock?這個問題將在下面進行闡述。本文先從synchronized的缺陷講起,然后再講述java.util.concurrent.locks包下常用的有哪些類和接口,最后討論以下一些關于鎖的概念方面的東西   以下是本文目錄大綱:   一.synchronized的缺陷   二.java.util.concurrent.locks包下常用的類   三.鎖的相關概念介紹   若有不正之處請多多諒解,并歡迎批評指正。   請尊重作者勞動成果,轉載請標明原文鏈接: ?  http://www.cnblogs.com/dolphin0520/p/3923167.html ## 一.synchronized的缺陷   synchronized是java中的一個關鍵字,也就是說是Java語言內置的特性。那么為什么會出現Lock呢?   在上面一篇文章中,我們了解到如果一個代碼塊被synchronized修飾了,當一個線程獲取了對應的鎖,并執行該代碼塊時,其他線程便只能一直等待,等待獲取鎖的線程釋放鎖,而這里獲取鎖的線程釋放鎖只會有兩種情況:   1)獲取鎖的線程執行完了該代碼塊,然后線程釋放對鎖的占有;   2)線程執行發生異常,此時JVM會讓線程自動釋放鎖。   那么如果這個獲取鎖的線程由于要等待IO或者其他原因(比如調用sleep方法)被阻塞了,但是又沒有釋放鎖,其他線程便只能干巴巴地等待,試想一下,這多么影響程序執行效率。   因此就需要有一種機制可以不讓等待的線程一直無期限地等待下去(比如只等待一定的時間或者能夠響應中斷),通過Lock就可以辦到。   再舉個例子:當有多個線程讀寫文件時,讀操作和寫操作會發生沖突現象,寫操作和寫操作會發生沖突現象,但是讀操作和讀操作不會發生沖突現象。   但是采用synchronized關鍵字來實現同步的話,就會導致一個問題:   如果多個線程都只是進行讀操作,所以當一個線程在進行讀操作時,其他線程只能等待無法進行讀操作。   因此就需要一種機制來使得多個線程都只是進行讀操作時,線程之間不會發生沖突,通過Lock就可以辦到。   另外,通過Lock可以知道線程有沒有成功獲取到鎖。這個是synchronized無法辦到的。   總結一下,也就是說Lock提供了比synchronized更多的功能。但是要注意以下幾點:   1)Lock不是Java語言內置的,synchronized是Java語言的關鍵字,因此是內置特性。Lock是一個類,通過這個類可以實現同步訪問;   2)Lock和synchronized有一點非常大的不同,采用synchronized不需要用戶去手動釋放鎖,當synchronized方法或者synchronized代碼塊執行完之后,系統會自動讓線程釋放對鎖的占用;而Lock則必須要用戶去手動釋放鎖,如果沒有主動釋放鎖,就有可能導致出現死鎖現象。 ## 二.java.util.concurrent.locks包下常用的類   下面我們就來探討一下java.util.concurrent.locks包中常用的類和接口。   **1.Lock**   首先要說明的就是Lock,通過查看Lock的源碼可知,Lock是一個接口: ~~~ public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit) throws InterruptedException; void unlock(); Condition newCondition(); } ~~~ ?  下面來逐個講述Lock接口中每個方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用來獲取鎖的。unLock()方法是用來釋放鎖的。newCondition()這個方法暫且不在此講述,會在后面的線程協作一文中講述。   在Lock中聲明了四個方法來獲取鎖,那么這四個方法有何區別呢?   首先lock()方法是平常使用得最多的一個方法,就是用來獲取鎖。如果鎖已被其他線程獲取,則進行等待。   由于在前面講到如果采用Lock,必須主動去釋放鎖,并且在發生異常時,不會自動釋放鎖。因此一般來說,使用Lock必須在try{}catch{}塊中進行,并且將釋放鎖的操作放在finally塊中進行,以保證鎖一定被被釋放,防止死鎖的發生。通常使用Lock來進行同步的話,是以下面這種形式去使用的: ~~~ Lock lock = ...; lock.lock(); try{ //處理任務 }catch(Exception ex){ }finally{ lock.unlock(); //釋放鎖 } ~~~   tryLock()方法是有返回值的,它表示用來嘗試獲取鎖,如果獲取成功,則返回true,如果獲取失敗(即鎖已被其他線程獲取),則返回false,也就說這個方法無論如何都會立即返回。在拿不到鎖時不會一直在那等待。   tryLock(long time, TimeUnit unit)方法和tryLock()方法是類似的,只不過區別在于這個方法在拿不到鎖時會等待一定的時間,在時間期限之內如果還拿不到鎖,就返回false。如果如果一開始拿到鎖或者在等待期間內拿到了鎖,則返回true。   所以,一般情況下通過tryLock來獲取鎖時是這樣使用的: ~~~ Lock lock = ...; if(lock.tryLock()) { try{ //處理任務 }catch(Exception ex){ }finally{ lock.unlock(); //釋放鎖 } }else { //如果不能獲取鎖,則直接做其他事情 } ~~~ ?  lockInterruptibly()方法比較特殊,當通過這個方法去獲取鎖時,如果線程正在等待獲取鎖,則這個線程能夠響應中斷,即中斷線程的等待狀態。也就使說,當兩個線程同時通過lock.lockInterruptibly()想獲取某個鎖時,假若此時線程A獲取到了鎖,而線程B只有在等待,那么對線程B調用threadB.interrupt()方法能夠中斷線程B的等待過程。   由于lockInterruptibly()的聲明中拋出了異常,所以lock.lockInterruptibly()必須放在try塊中或者在調用lockInterruptibly()的方法外聲明拋出InterruptedException。   因此lockInterruptibly()一般的使用形式如下: ~~~ public void method() throws InterruptedException { lock.lockInterruptibly(); try { //..... } finally { lock.unlock(); } } ~~~   注意,當一個線程獲取了鎖之后,是不會被interrupt()方法中斷的。因為本身在前面的文章中講過單獨調用interrupt()方法不能中斷正在運行過程中的線程,只能中斷阻塞過程中的線程。   因此當通過lockInterruptibly()方法獲取某個鎖時,如果不能獲取到,只有進行等待的情況下,是可以響應中斷的。   而用synchronized修飾的話,當一個線程處于等待某個鎖的狀態,是無法被中斷的,只有一直等待下去。   **2.ReentrantLock**   ReentrantLock,意思是“可重入鎖”,關于可重入鎖的概念在下一節講述。ReentrantLock是唯一實現了Lock接口的類,并且ReentrantLock提供了更多的方法。下面通過一些實例看具體看一下如何使用ReentrantLock。   例子1,lock()的正確使用方法 ~~~ public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { Lock lock = new ReentrantLock(); //注意這個地方 lock.lock(); try { System.out.println(thread.getName()+"得到了鎖"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"釋放了鎖"); lock.unlock(); } } } ~~~ ?  各位朋友先想一下這段代碼的輸出結果是什么? ~~~ Thread-0得到了鎖 Thread-1得到了鎖 Thread-0釋放了鎖 Thread-1釋放了鎖 ~~~   也許有朋友會問,怎么會輸出這個結果?第二個線程怎么會在第一個線程釋放鎖之前得到了鎖?原因在于,在insert方法中的lock變量是局部變量,每個線程執行該方法時都會保存一個副本,那么理所當然每個線程執行到lock.lock()處獲取的是不同的鎖,所以就不會發生沖突。   知道了原因改起來就比較容易了,只需要將lock聲明為類的屬性即可。 ~~~ public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); //注意這個地方 public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { lock.lock(); try { System.out.println(thread.getName()+"得到了鎖"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"釋放了鎖"); lock.unlock(); } } } ~~~ ?  這樣就是正確地使用Lock的方法了。   例子2,tryLock()的使用方法 ~~~ public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); //注意這個地方 public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { if(lock.tryLock()) { try { System.out.println(thread.getName()+"得到了鎖"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"釋放了鎖"); lock.unlock(); } } else { System.out.println(thread.getName()+"獲取鎖失敗"); } } } ~~~ ?  輸出結果: ~~~ Thread-0得到了鎖 Thread-1獲取鎖失敗 Thread-0釋放了鎖 ~~~   例子3,lockInterruptibly()響應中斷的使用方法: ~~~ public class Test { private Lock lock = new ReentrantLock(); public static void main(String[] args) { Test test = new Test(); MyThread thread1 = new MyThread(test); MyThread thread2 = new MyThread(test); thread1.start(); thread2.start(); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } thread2.interrupt(); } public void insert(Thread thread) throws InterruptedException{ lock.lockInterruptibly(); //注意,如果需要正確中斷等待鎖的線程,必須將獲取鎖放在外面,然后將InterruptedException拋出 try { System.out.println(thread.getName()+"得到了鎖"); long startTime = System.currentTimeMillis(); for( ; ;) { if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) break; //插入數據 } } finally { System.out.println(Thread.currentThread().getName()+"執行finally"); lock.unlock(); System.out.println(thread.getName()+"釋放了鎖"); } } } class MyThread extends Thread { private Test test = null; public MyThread(Test test) { this.test = test; } @Override public void run() { try { test.insert(Thread.currentThread()); } catch (InterruptedException e) { System.out.println(Thread.currentThread().getName()+"被中斷"); } } } ~~~   運行之后,發現thread2能夠被正確中斷。   **3.ReadWriteLock**   ReadWriteLock也是一個接口,在它里面只定義了兩個方法: ~~~ public interface ReadWriteLock { /** * Returns the lock used for reading. * * @return the lock used for reading. */ Lock readLock(); /** * Returns the lock used for writing. * * @return the lock used for writing. */ Lock writeLock(); } ~~~ ?  一個用來獲取讀鎖,一個用來獲取寫鎖。也就是說將文件的讀寫操作分開,分成2個鎖來分配給線程,從而使得多個線程可以同時進行讀操作。下面的ReentrantReadWriteLock實現了ReadWriteLock接口。   **4.ReentrantReadWriteLock**   ReentrantReadWriteLock里面提供了很多豐富的方法,不過最主要的有兩個方法:readLock()和writeLock()用來獲取讀鎖和寫鎖。   下面通過幾個例子來看一下ReentrantReadWriteLock具體用法。   假如有多個線程要同時進行讀操作的話,先看一下synchronized達到的效果: ~~~ public class Test { private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); } public synchronized void get(Thread thread) { long start = System.currentTimeMillis(); while(System.currentTimeMillis() - start <= 1) { System.out.println(thread.getName()+"正在進行讀操作"); } System.out.println(thread.getName()+"讀操作完畢"); } } ~~~ ?  這段程序的輸出結果會是,直到thread1執行完讀操作之后,才會打印thread2執行讀操作的信息。 ~~~ Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0讀操作完畢 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1讀操作完畢 ~~~   而改成用讀寫鎖的話: ~~~ public class Test { private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); } public void get(Thread thread) { rwl.readLock().lock(); try { long start = System.currentTimeMillis(); while(System.currentTimeMillis() - start <= 1) { System.out.println(thread.getName()+"正在進行讀操作"); } System.out.println(thread.getName()+"讀操作完畢"); } finally { rwl.readLock().unlock(); } } } ~~~ ?  此時打印的結果為: ~~~ Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0正在進行讀操作 Thread-1正在進行讀操作 Thread-0讀操作完畢 Thread-1讀操作完畢 ~~~   說明thread1和thread2在同時進行讀操作。   這樣就大大提升了讀操作的效率。   不過要注意的是,如果有一個線程已經占用了讀鎖,則此時其他線程如果要申請寫鎖,則申請寫鎖的線程會一直等待釋放讀鎖。   如果有一個線程已經占用了寫鎖,則此時其他線程如果申請寫鎖或者讀鎖,則申請的線程會一直等待釋放寫鎖。   關于ReentrantReadWriteLock類中的其他方法感興趣的朋友可以自行查閱API文檔。   **5.Lock和synchronized的選擇**   總結來說,Lock和synchronized有以下幾點不同:   1)Lock是一個接口,而synchronized是Java中的關鍵字,synchronized是內置的語言實現;   2)synchronized在發生異常時,會自動釋放線程占有的鎖,因此不會導致死鎖現象發生;而Lock在發生異常時,如果沒有主動通過unLock()去釋放鎖,則很可能造成死鎖現象,因此使用Lock時需要在finally塊中釋放鎖;   3)Lock可以讓等待鎖的線程響應中斷,而synchronized卻不行,使用synchronized時,等待的線程會一直等待下去,不能夠響應中斷;   4)通過Lock可以知道有沒有成功獲取鎖,而synchronized卻無法辦到。   5)Lock可以提高多個線程進行讀操作的效率。   在性能上來說,如果競爭資源不激烈,兩者的性能是差不多的,而當競爭資源非常激烈時(即有大量線程同時競爭),此時Lock的性能要遠遠優于synchronized。所以說,在具體使用時要根據適當情況選擇。 ## 三.鎖的相關概念介紹   在前面介紹了Lock的基本使用,這一節來介紹一下與鎖相關的幾個概念。   **1.可重入鎖**   如果鎖具備可重入性,則稱作為可重入鎖。像synchronized和ReentrantLock都是可重入鎖,可重入性在我看來實際上表明了鎖的分配機制:基于線程的分配,而不是基于方法調用的分配。舉個簡單的例子,當一個線程執行到某個synchronized方法時,比如說method1,而在method1中會調用另外一個synchronized方法method2,此時線程不必重新去申請鎖,而是可以直接執行方法method2。   看下面這段代碼就明白了: ~~~ class MyClass { public synchronized void method1() { method2(); } public synchronized void method2() { } } ~~~ ?  上述代碼中的兩個方法method1和method2都用synchronized修飾了,假如某一時刻,線程A執行到了method1,此時線程A獲取了這個對象的鎖,而由于method2也是synchronized方法,假如synchronized不具備可重入性,此時線程A需要重新申請鎖。但是這就會造成一個問題,因為線程A已經持有了該對象的鎖,而又在申請獲取該對象的鎖,這樣就會線程A一直等待永遠不會獲取到的鎖。   而由于synchronized和Lock都具備可重入性,所以不會發生上述現象。   **2.可中斷鎖**   可中斷鎖:顧名思義,就是可以相應中斷的鎖。   在Java中,synchronized就不是可中斷鎖,而Lock是可中斷鎖。   如果某一線程A正在執行鎖中的代碼,另一線程B正在等待獲取該鎖,可能由于等待時間過長,線程B不想等待了,想先處理其他事情,我們可以讓它中斷自己或者在別的線程中中斷它,這種就是可中斷鎖。   在前面演示lockInterruptibly()的用法時已經體現了Lock的可中斷性。   **3.公平鎖**   公平鎖即盡量以請求鎖的順序來獲取鎖。比如同是有多個線程在等待一個鎖,當這個鎖被釋放時,等待時間最久的線程(最先請求的線程)會獲得該所,這種就是公平鎖。   非公平鎖即無法保證鎖的獲取是按照請求鎖的順序進行的。這樣就可能導致某個或者一些線程永遠獲取不到鎖。   在Java中,synchronized就是非公平鎖,它無法保證等待的線程獲取鎖的順序。   而對于ReentrantLock和ReentrantReadWriteLock,它默認情況下是非公平鎖,但是可以設置為公平鎖。   看一下這2個類的源代碼就清楚了:   ![](https://box.kancloud.cn/08aeac3116d1fe5533fc2defcd2b72bf_739x763.png)   在ReentrantLock中定義了2個靜態內部類,一個是NotFairSync,一個是FairSync,分別用來實現非公平鎖和公平鎖。   我們可以在創建ReentrantLock對象時,通過以下方式來設置鎖的公平性: `ReentrantLock lock = new ReentrantLock(true);` ?  如果參數為true表示為公平鎖,為fasle為非公平鎖。默認情況下,如果使用無參構造器,則是非公平鎖。   ![](https://box.kancloud.cn/bda439c6fd5c8eee3ab04e8acf1d3c43_665x310.png)   另外在ReentrantLock類中定義了很多方法,比如:   isFair()??????? //判斷鎖是否是公平鎖   isLocked()??? //判斷鎖是否被任何線程獲取了   isHeldByCurrentThread()?? //判斷鎖是否被當前線程獲取了   hasQueuedThreads()?? //判斷是否有線程在等待該鎖   在ReentrantReadWriteLock中也有類似的方法,同樣也可以設置為公平鎖和非公平鎖。不過要記住,ReentrantReadWriteLock并未實現Lock接口,它實現的是ReadWriteLock接口。   **4.讀寫鎖**   讀寫鎖將對一個資源(比如文件)的訪問分成了2個鎖,一個讀鎖和一個寫鎖。   正因為有了讀寫鎖,才使得多個線程之間的讀操作不會發生沖突。   ReadWriteLock就是讀寫鎖,它是一個接口,ReentrantReadWriteLock實現了這個接口。   可以通過readLock()獲取讀鎖,通過writeLock()獲取寫鎖。   上面已經演示過了讀寫鎖的使用方法,在此不再贅述。   參考資料:   [http://blog.csdn.net/ns_code/article/details/17487337](http://blog.csdn.net/ns_code/article/details/17487337)   [http://houlinyan.iteye.com/blog/1112535](http://houlinyan.iteye.com/blog/1112535)   [http://ifeve.com/locks/](http://ifeve.com/locks/)   [http://ifeve.com/read-write-locks/](http://ifeve.com/read-write-locks/)   [http://blog.csdn.net/fancyerii/article/details/6783224](http://blog.csdn.net/fancyerii/article/details/6783224)   [http://blog.csdn.net/ghsau/article/details/7461369/](http://blog.csdn.net/ghsau/article/details/7461369/)   [http://blog.csdn.net/zhaozhenzuo/article/details/37109015](http://blog.csdn.net/zhaozhenzuo/article/details/37109015)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看