[如何合理地估算線程池大小?](http://ifeve.com/how-to-calculate-threadpool-size/)
感謝網友【[蔣小強](http://weibo.com/u/1761654130)】投稿。
**如何合理地估算線程池大小?**
這個問題雖然看起來很小,卻并不那么容易回答。大家如果有更好的方法歡迎賜教,先來一個天真的估算方法:假設要求一個系統的TPS(Transaction Per Second或者Task Per Second)至少為20,然后假設每個Transaction由一個線程完成,繼續假設平均每個線程處理一個Transaction的時間為4s。那么問題轉化為:
**如何設計線程池大小,使得可以在1s內處理完20個Transaction?**
計算過程很簡單,每個線程的處理能力為0.25TPS,那么要達到20TPS,顯然需要20/0.25=80個線程。
很顯然這個估算方法很天真,因為它沒有考慮到CPU數目。一般服務器的CPU核數為16或者32,如果有80個線程,那么肯定會帶來太多不必要的線程上下文切換開銷。
再來第二種簡單的但不知是否可行的方法(N為CPU總核數):
* 如果是CPU密集型應用,則線程池大小設置為N+1
* 如果是IO密集型應用,則線程池大小設置為2N+1
如果一臺服務器上只部署這一個應用并且只有這一個線程池,那么這種估算或許合理,具體還需自行測試驗證。
接下來在這個文檔:服務器性能IO優化 中發現一個估算公式:
| `1` | `最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目` |
比如平均每個線程CPU運行時間為0.5s,而線程等待時間(非CPU運行時間,比如IO)為1.5s,CPU核心數為8,那么根據上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化為:
| `1` | `最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目` |
可以得出一個結論:
**線程等待時間所占比例越高,需要越多線程。線程CPU時間所占比例越高,需要越少線程。**
上一種估算方法也和這個結論相合。
一個系統最快的部分是CPU,所以決定一個系統吞吐量上限的是CPU。增強CPU處理能力,可以提高系統吞吐量上限。但根據短板效應,真實的系統吞吐量并不能單純根據CPU來計算。那要提高系統吞吐量,就需要從“系統短板”(比如網絡延遲、IO)著手:
* 盡量提高短板操作的并行化比率,比如多線程下載技術
* 增強短板能力,比如用NIO替代IO
第一條可以聯系到Amdahl定律,這條定律定義了串行系統并行化后的加速比計算公式:
| `1` | `加速比=優化前系統耗時 / 優化后系統耗時` |
加速比越大,表明系統并行化的優化效果越好。Addahl定律還給出了系統并行度、CPU數目和加速比的關系,加速比為Speedup,系統串行化比率(指串行執行代碼所占比率)為F,CPU數目為N:
| `1` | `Speedup <=?``1`?`/ (F + (``1``-F)/N)` |
當N足夠大時,串行化比率F越小,加速比Speedup越大。
寫到這里,我突然冒出一個問題。
**是否使用線程池就一定比使用單線程高效呢?**
答案是否定的,比如Redis就是單線程的,但它卻非常高效,基本操作都能達到十萬量級/s。從線程這個角度來看,部分原因在于:
* 多線程帶來線程上下文切換開銷,單線程就沒有這種開銷
* 鎖
當然“Redis很快”更本質的原因在于:Redis基本都是內存操作,這種情況下單線程可以很高效地利用CPU。而多線程適用場景一般是:存在相當比例的IO和網絡操作。
所以即使有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都需要結合系統真實情況(比如是IO密集型或者是CPU密集型或者是純內存操作)和硬件環境(CPU、內存、硬盤讀寫速度、網絡狀況等)來不斷嘗試達到一個符合實際的合理估算值。
最后來一個“Dark Magic”估算方法(因為我暫時還沒有搞懂它的原理),使用下面的類:
| `001` | `package`?`pool_size_calculate;` |
| `002` | ? |
| `003` | `import`?`java.math.BigDecimal;` |
| `004` | `import`?`java.math.RoundingMode;` |
| `005` | `import`?`java.util.Timer;` |
| `006` | `import`?`java.util.TimerTask;` |
| `007` | `import`?`java.util.concurrent.BlockingQueue;` |
| `008` | ? |
| `009` | `/**` |
| `010` | `* A class that calculates the optimal thread pool boundaries. It takes the` |
| `011` | `* desired target utilization and the desired work queue memory consumption as` |
| `012` | `* input and retuns thread count and work queue capacity.` |
| `013` | `*` |
| `014` | `* @author Niklas Schlimm` |
| `015` | `*` |
| `016` | `*/` |
| `017` | `public`?`abstract`?`class`?`PoolSizeCalculator {` |
| `018` | ? |
| `019` | `/**` |
| `020` | `* The sample queue size to calculate the size of a single {@link Runnable}` |
| `021` | `* element.` |
| `022` | `*/` |
| `023` | `private`?`final`?`int`?`SAMPLE_QUEUE_SIZE =?``1000``;` |
| `024` | ? |
| `025` | `/**` |
| `026` | `* Accuracy of test run. It must finish within 20ms of the testTime` |
| `027` | `* otherwise we retry the test. This could be configurable.` |
| `028` | `*/` |
| `029` | `private`?`final`?`int`?`EPSYLON =?``20``;` |
| `030` | ? |
| `031` | `/**` |
| `032` | `* Control variable for the CPU time investigation.` |
| `033` | `*/` |
| `034` | `private`?`volatile`?`boolean`?`expired;` |
| `035` | ? |
| `036` | `/**` |
| `037` | `* Time (millis) of the test run in the CPU time calculation.` |
| `038` | `*/` |
| `039` | `private`?`final`?`long`?`testtime =?``3000``;` |
| `040` | ? |
| `041` | `/**` |
| `042` | `* Calculates the boundaries of a thread pool for a given {@link Runnable}.` |
| `043` | `*` |
| `044` | `* @param targetUtilization` |
| `045` | `*??????????? the desired utilization of the CPUs (0 <= targetUtilization <=?? *??????????? 1)???? * @param targetQueueSizeBytes?? *??????????? the desired maximum work queue size of the thread pool (bytes)???? */`?????`protected`?`void`?`calculateBoundaries(BigDecimal targetUtilization,??????????? BigDecimal targetQueueSizeBytes) {????? calculateOptimalCapacity(targetQueueSizeBytes);???????? Runnable task = creatTask();??????? start(task);??????? start(task);?``// warm up phase?????? long cputime = getCurrentThreadCPUTime();?????? start(task); // test intervall????? cputime = getCurrentThreadCPUTime() - cputime;????? long waittime = (testtime * 1000000) - cputime;???????? calculateOptimalThreadCount(cputime, waittime, targetUtilization);? }?? private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {??????? long mem = calculateMemoryUsage();????? BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(????????????? mem), RoundingMode.HALF_UP);??????? System.out.println("Target queue memory usage (bytes): "??????????????? + targetQueueSizeBytes);??????? System.out.println("createTask() produced "???????????????? + creatTask().getClass().getName() + " which took " + mem?????????????? + " bytes in a queue");???????? System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);?????? System.out.println("* Recommended queue capacity (bytes): "???????????????? + queueCapacity);?? }?? /**????? * Brian Goetz' optimal thread count formula, see 'Java Concurrency in?? * Practice' (chapter 8.2)?? *?????? * @param cpu??? *??????????? cpu time consumed by considered task?? * @param wait?? *??????????? wait time of considered task?? * @param targetUtilization????? *??????????? target utilization of the system?? */???? private void calculateOptimalThreadCount(long cpu, long wait,?????????? BigDecimal targetUtilization) {???????? BigDecimal waitTime = new BigDecimal(wait);???????? BigDecimal computeTime = new BigDecimal(cpu);?????? BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()??????????????? .availableProcessors());??????? BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)???????????????? .multiply(????????????????????? new BigDecimal(1).add(waitTime.divide(computeTime,????????????????????????????? RoundingMode.HALF_UP)));??????? System.out.println("Number of CPU: " + numberOfCPU);??????? System.out.println("Target utilization: " + targetUtilization);???????? System.out.println("Elapsed time (nanos): " + (testtime * 1000000));??????? System.out.println("Compute time (nanos): " + cpu);???????? System.out.println("Wait time (nanos): " + wait);?????? System.out.println("Formula: " + numberOfCPU + " * "??????????????? + targetUtilization + " * (1 + " + waitTime + " / "???????????????? + computeTime + ")");?????? System.out.println("* Optimal thread count: " + optimalthreadcount);??? }?? /**????? * Runs the {@link Runnable} over a period defined in {@link #testtime}.???? * Based on Heinz Kabbutz' ideas???? * ([http://www.javaspecialists.eu/archive/Issue124.html](http://www.javaspecialists.eu/archive/Issue124.html)).??? *?????? * @param task?? *??????????? the runnable under investigation?? */???? public void start(Runnable task) {????? long start = 0;???????? int runs = 0;?????? do {??????????? if (++runs > 5) {` |
| `046` | `throw`?`new`?`IllegalStateException(``"Test not accurate"``);` |
| `047` | `}` |
| `048` | `expired =?``false``;` |
| `049` | `start = System.currentTimeMillis();` |
| `050` | `Timer timer =?``new`?`Timer();` |
| `051` | `timer.schedule(``new`?`TimerTask() {` |
| `052` | `public`?`void`?`run() {` |
| `053` | `expired =?``true``;` |
| `054` | `}` |
| `055` | `}, testtime);` |
| `056` | `while`?`(!expired) {` |
| `057` | `task.run();` |
| `058` | `}` |
| `059` | `start = System.currentTimeMillis() - start;` |
| `060` | `timer.cancel();` |
| `061` | `}?``while`?`(Math.abs(start - testtime) > EPSYLON);` |
| `062` | `collectGarbage(``3``);` |
| `063` | `}` |
| `064` | ? |
| `065` | `private`?`void`?`collectGarbage(``int`?`times) {` |
| `066` | `for`?`(``int`?`i =?``0``; i < times; i++) {` |
| `067` | `System.gc();` |
| `068` | `try`?`{` |
| `069` | `Thread.sleep(``10``);` |
| `070` | `}?``catch`?`(InterruptedException e) {` |
| `071` | `Thread.currentThread().interrupt();` |
| `072` | `break``;` |
| `073` | `}` |
| `074` | `}` |
| `075` | `}` |
| `076` | ? |
| `077` | `/**` |
| `078` | `* Calculates the memory usage of a single element in a work queue. Based on` |
| `079` | `* Heinz Kabbutz' ideas` |
| `080` | `* ([http://www.javaspecialists.eu/archive/Issue029.html](http://www.javaspecialists.eu/archive/Issue029.html)).` |
| `081` | `*` |
| `082` | `* @return memory usage of a single {@link Runnable} element in the thread` |
| `083` | `*???????? pools work queue` |
| `084` | `*/` |
| `085` | `public`?`long`?`calculateMemoryUsage() {` |
| `086` | `BlockingQueue queue = createWorkQueue();` |
| `087` | `for`?`(``int`?`i =?``0``; i < SAMPLE_QUEUE_SIZE; i++) {` |
| `088` | `queue.add(creatTask());` |
| `089` | `}` |
| `090` | `long`?`mem0 = Runtime.getRuntime().totalMemory()` |
| `091` | `- Runtime.getRuntime().freeMemory();` |
| `092` | `long`?`mem1 = Runtime.getRuntime().totalMemory()` |
| `093` | `- Runtime.getRuntime().freeMemory();` |
| `094` | `queue =?``null``;` |
| `095` | `collectGarbage(``15``);` |
| `096` | `mem0 = Runtime.getRuntime().totalMemory()` |
| `097` | `- Runtime.getRuntime().freeMemory();` |
| `098` | `queue = createWorkQueue();` |
| `099` | `for`?`(``int`?`i =?``0``; i < SAMPLE_QUEUE_SIZE; i++) {` |
| `100` | `queue.add(creatTask());` |
| `101` | `}` |
| `102` | `collectGarbage(``15``);` |
| `103` | `mem1 = Runtime.getRuntime().totalMemory()` |
| `104` | `- Runtime.getRuntime().freeMemory();` |
| `105` | `return`?`(mem1 - mem0) / SAMPLE_QUEUE_SIZE;` |
| `106` | `}` |
| `107` | ? |
| `108` | `/**` |
| `109` | `* Create your runnable task here.` |
| `110` | `*` |
| `111` | `* @return an instance of your runnable task under investigation` |
| `112` | `*/` |
| `113` | `protected`?`abstract`?`Runnable creatTask();` |
| `114` | ? |
| `115` | `/**` |
| `116` | `* Return an instance of the queue used in the thread pool.` |
| `117` | `*` |
| `118` | `* @return queue instance` |
| `119` | `*/` |
| `120` | `protected`?`abstract`?`BlockingQueue createWorkQueue();` |
| `121` | ? |
| `122` | `/**` |
| `123` | `* Calculate current cpu time. Various frameworks may be used here,` |
| `124` | `* depending on the operating system in use. (e.g.` |
| `125` | `*?[http://www.hyperic.com/products/sigar](http://www.hyperic.com/products/sigar)). The more accurate the CPU time` |
| `126` | `* measurement, the more accurate the results for thread count boundaries.` |
| `127` | `*` |
| `128` | `* @return current cpu time of current thread` |
| `129` | `*/` |
| `130` | `protected`?`abstract`?`long`?`getCurrentThreadCPUTime();` |
| `131` | ? |
| `132` | `}` |
然后自己繼承這個抽象類并實現它的三個抽象方法,比如下面是我寫的一個示例(任務是請求網絡數據),其中我指定期望CPU利用率為1.0(即100%),任務隊列總大小不超過100,000字節:
| `01` | `package`?`pool_size_calculate;` |
| `02` | ? |
| `03` | `import`?`java.io.BufferedReader;` |
| `04` | `import`?`java.io.IOException;` |
| `05` | `import`?`java.io.InputStreamReader;` |
| `06` | `import`?`java.lang.management.ManagementFactory;` |
| `07` | `import`?`java.math.BigDecimal;` |
| `08` | `import`?`java.net.HttpURLConnection;` |
| `09` | `import`?`java.net.URL;` |
| `10` | `import`?`java.util.concurrent.BlockingQueue;` |
| `11` | `import`?`java.util.concurrent.LinkedBlockingQueue;` |
| `12` | ? |
| `13` | `public`?`class`?`SimplePoolSizeCaculatorImpl?``extends`?`PoolSizeCalculator {` |
| `14` | ? |
| `15` | `@Override` |
| `16` | `protected`?`Runnable creatTask() {` |
| `17` | `return`?`new`?`AsyncIOTask();` |
| `18` | `}` |
| `19` | ? |
| `20` | `@Override` |
| `21` | `protected`?`BlockingQueue createWorkQueue() {` |
| `22` | `return`?`new`?`LinkedBlockingQueue(``1000``);` |
| `23` | `}` |
| `24` | ? |
| `25` | `@Override` |
| `26` | `protected`?`long`?`getCurrentThreadCPUTime() {` |
| `27` | `return`?`ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();` |
| `28` | `}` |
| `29` | ? |
| `30` | `public`?`static`?`void`?`main(String[] args) {` |
| `31` | `PoolSizeCalculator poolSizeCalculator =?``new`?`SimplePoolSizeCaculatorImpl();` |
| `32` | `poolSizeCalculator.calculateBoundaries(``new`?`BigDecimal(``1.0``),?``new`?`BigDecimal(``100000``));` |
| `33` | `}` |
| `34` | ? |
| `35` | `}` |
| `36` | ? |
| `37` | `/**` |
| `38` | `* 自定義的異步IO任務` |
| `39` | `* @author Will` |
| `40` | `*` |
| `41` | `*/` |
| `42` | `class`?`AsyncIOTask?``implements`?`Runnable {` |
| `43` | ? |
| `44` | `@Override` |
| `45` | `public`?`void`?`run() {` |
| `46` | `HttpURLConnection connection =?``null``;` |
| `47` | `BufferedReader reader =?``null``;` |
| `48` | `try`?`{` |
| `49` | `String getURL =?``"[http://baidu.com](http://baidu.com/)"``;` |
| `50` | `URL getUrl =?``new`?`URL(getURL);` |
| `51` | ? |
| `52` | `connection = (HttpURLConnection) getUrl.openConnection();` |
| `53` | `connection.connect();` |
| `54` | `reader =?``new`?`BufferedReader(``new`?`InputStreamReader(` |
| `55` | `connection.getInputStream()));` |
| `56` | ? |
| `57` | `String line;` |
| `58` | `while`?`((line = reader.readLine()) !=?``null``) {` |
| `59` | `// empty loop` |
| `60` | `}` |
| `61` | `}` |
| `62` | ? |
| `63` | `catch`?`(IOException e) {` |
| `64` | ? |
| `65` | `}?``finally`?`{` |
| `66` | `if``(reader !=?``null``) {` |
| `67` | `try`?`{` |
| `68` | `reader.close();` |
| `69` | `}` |
| `70` | `catch``(Exception e) {` |
| `71` | ? |
| `72` | `}` |
| `73` | `}` |
| `74` | `connection.disconnect();` |
| `75` | `}` |
| `76` | ? |
| `77` | `}` |
| `78` | ? |
| `79` | `}` |
得到的輸出如下:
| `01` | `Target queue memory usage (bytes): 100000` |
| `02` | `createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue` |
| `03` | `Formula: 100000 / 40` |
| `04` | `* Recommended queue capacity (bytes): 2500` |
| `05` | `Number of CPU: 4` |
| `06` | `Target utilization: 1` |
| `07` | `Elapsed time (nanos): 3000000000` |
| `08` | `Compute time (nanos): 47181000` |
| `09` | `Wait time (nanos): 2952819000` |
| `10` | `Formula: 4 * 1 * (1 + 2952819000 / 47181000)` |
| `11` | `* Optimal thread count: 256` |
推薦的任務隊列大小為2500,線程數為256,有點出乎意料之外。我可以如下構造一個線程池:
| `1` | `ThreadPoolExecutor pool =` |
| `2` | `new`?`ThreadPoolExecutor(``256``,?``256``, 0L, TimeUnit.MILLISECONDS,?``new`?`LinkedBlockingQueue(``2500``));` |
**原創文章,轉載請注明:**?轉載自[并發編程網 – ifeve.com](http://ifeve.com/)**本文鏈接地址:**?[如何合理地估算線程池大小?](http://ifeve.com/how-to-calculate-threadpool-size/)
- JVM
- 深入理解Java內存模型
- 深入理解Java內存模型(一)——基礎
- 深入理解Java內存模型(二)——重排序
- 深入理解Java內存模型(三)——順序一致性
- 深入理解Java內存模型(四)——volatile
- 深入理解Java內存模型(五)——鎖
- 深入理解Java內存模型(六)——final
- 深入理解Java內存模型(七)——總結
- Java內存模型
- Java內存模型2
- 堆內內存還是堆外內存?
- JVM內存配置詳解
- Java內存分配全面淺析
- 深入Java核心 Java內存分配原理精講
- jvm常量池
- JVM調優總結
- JVM調優總結(一)-- 一些概念
- JVM調優總結(二)-一些概念
- VM調優總結(三)-基本垃圾回收算法
- JVM調優總結(四)-垃圾回收面臨的問題
- JVM調優總結(五)-分代垃圾回收詳述1
- JVM調優總結(六)-分代垃圾回收詳述2
- JVM調優總結(七)-典型配置舉例1
- JVM調優總結(八)-典型配置舉例2
- JVM調優總結(九)-新一代的垃圾回收算法
- JVM調優總結(十)-調優方法
- 基礎
- Java 征途:行者的地圖
- Java程序員應該知道的10個面向對象理論
- Java泛型總結
- 序列化與反序列化
- 通過反編譯深入理解Java String及intern
- android 加固防止反編譯-重新打包
- volatile
- 正確使用 Volatile 變量
- 異常
- 深入理解java異常處理機制
- Java異常處理的10個最佳實踐
- Java異常處理手冊和最佳實踐
- Java提高篇——對象克隆(復制)
- Java中如何克隆集合——ArrayList和HashSet深拷貝
- Java中hashCode的作用
- Java提高篇之hashCode
- 常見正則表達式
- 類
- 理解java類加載器以及ClassLoader類
- 深入探討 Java 類加載器
- 類加載器的工作原理
- java反射
- 集合
- HashMap的工作原理
- ConcurrentHashMap之實現細節
- java.util.concurrent 之ConcurrentHashMap 源碼分析
- HashMap的實現原理和底層數據結構
- 線程
- 關于Java并發編程的總結和思考
- 40個Java多線程問題總結
- Java中的多線程你只要看這一篇就夠了
- Java多線程干貨系列(1):Java多線程基礎
- Java非阻塞算法簡介
- Java并發的四種風味:Thread、Executor、ForkJoin和Actor
- Java中不同的并發實現的性能比較
- JAVA CAS原理深度分析
- 多個線程之間共享數據的方式
- Java并發編程
- Java并發編程(1):可重入內置鎖
- Java并發編程(2):線程中斷(含代碼)
- Java并發編程(3):線程掛起、恢復與終止的正確方法(含代碼)
- Java并發編程(4):守護線程與線程阻塞的四種情況
- Java并發編程(5):volatile變量修飾符—意料之外的問題(含代碼)
- Java并發編程(6):Runnable和Thread實現多線程的區別(含代碼)
- Java并發編程(7):使用synchronized獲取互斥鎖的幾點說明
- Java并發編程(8):多線程環境中安全使用集合API(含代碼)
- Java并發編程(9):死鎖(含代碼)
- Java并發編程(10):使用wait/notify/notifyAll實現線程間通信的幾點重要說明
- java并發編程-II
- Java多線程基礎:進程和線程之由來
- Java并發編程:如何創建線程?
- Java并發編程:Thread類的使用
- Java并發編程:synchronized
- Java并發編程:Lock
- Java并發編程:volatile關鍵字解析
- Java并發編程:深入剖析ThreadLocal
- Java并發編程:CountDownLatch、CyclicBarrier和Semaphore
- Java并發編程:線程間協作的兩種方式:wait、notify、notifyAll和Condition
- Synchronized與Lock
- JVM底層又是如何實現synchronized的
- Java synchronized詳解
- synchronized 與 Lock 的那點事
- 深入研究 Java Synchronize 和 Lock 的區別與用法
- JAVA編程中的鎖機制詳解
- Java中的鎖
- TreadLocal
- 深入JDK源碼之ThreadLocal類
- 聊一聊ThreadLocal
- ThreadLocal
- ThreadLocal的內存泄露
- 多線程設計模式
- Java多線程編程中Future模式的詳解
- 原子操作(CAS)
- [譯]Java中Wait、Sleep和Yield方法的區別
- 線程池
- 如何合理地估算線程池大小?
- JAVA線程池中隊列與池大小的關系
- Java四種線程池的使用
- 深入理解Java之線程池
- java并發編程III
- Java 8并發工具包漫游指南
- 聊聊并發
- 聊聊并發(一)——深入分析Volatile的實現原理
- 聊聊并發(二)——Java SE1.6中的Synchronized
- 文件
- 網絡
- index
- 內存文章索引
- 基礎文章索引
- 線程文章索引
- 網絡文章索引
- IOC
- 設計模式文章索引
- 面試
- Java常量池詳解之一道比較蛋疼的面試題
- 近5年133個Java面試問題列表
- Java工程師成神之路
- Java字符串問題Top10
- 設計模式
- Java:單例模式的七種寫法
- Java 利用枚舉實現單例模式
- 常用jar
- HttpClient和HtmlUnit的比較總結
- IO
- NIO
- NIO入門
- 注解
- Java Annotation認知(包括框架圖、詳細介紹、示例說明)