### 系列內容:
## 此內容是該系列的一部分:[Java 理論與實踐](http://www.ibm.com/developerworks/cn/java/j-jtp/)
Java 語言中的 volatile 變量可以被看作是一種 “程度較輕的?`synchronized`”;與?`synchronized`?塊相比,volatile 變量所需的編碼較少,并且運行時開銷也較少,但是它所能實現的功能也僅是?`synchronized`?的一部分。本文介紹了幾種有效使用 volatile 變量的模式,并強調了幾種不適合使用 volatile 變量的情形。
鎖提供了兩種主要特性:*互斥(mutual exclusion)*?和*可見性(visibility)*。互斥即一次只允許一個線程持有某個特定的鎖,因此可使用該特性實現對共享數據的協調訪問協議,這樣,一次就只有一個線程能夠使用該共享數據。可見性要更加復雜一些,它必須確保釋放鎖之前對共享數據做出的更改對于隨后獲得該鎖的另一個線程是可見的 —— 如果沒有同步機制提供的這種可見性保證,線程看到的共享變量可能是修改前的值或不一致的值,這將引發許多嚴重問題。
## Volatile 變量
Volatile 變量具有?`synchronized`?的可見性特性,但是不具備原子特性。這就是說線程能夠自動發現 volatile 變量的最新值。Volatile 變量可用于提供線程安全,但是只能應用于非常有限的一組用例:多個變量之間或者某個變量的當前值與修改后值之間沒有約束。因此,單獨使用 volatile 還不足以實現計數器、互斥鎖或任何具有與多個變量相關的不變式(Invariants)的類(例如 “start <=end”)。
出于簡易性或可伸縮性的考慮,您可能傾向于使用 volatile 變量而不是鎖。當使用 volatile 變量而非鎖時,某些習慣用法(idiom)更加易于編碼和閱讀。此外,volatile 變量不會像鎖那樣造成線程阻塞,因此也很少造成可伸縮性問題。在某些情況下,如果讀操作遠遠大于寫操作,volatile 變量還可以提供優于鎖的性能優勢。
### 正確使用 volatile 變量的條件
您只能在有限的一些情形下使用 volatile 變量替代鎖。要使 volatile 變量提供理想的線程安全,必須同時滿足下面兩個條件:
* 對變量的寫操作不依賴于當前值。
* 該變量沒有包含在具有其他變量的不變式中。
實際上,這些條件表明,可以被寫入 volatile 變量的這些有效值獨立于任何程序的狀態,包括變量的當前狀態。
第一個條件的限制使 volatile 變量不能用作線程安全計數器。雖然增量操作(`x++`)看上去類似一個單獨操作,實際上它是一個由讀取-修改-寫入操作序列組成的組合操作,必須以原子方式執行,而 volatile 不能提供必須的原子特性。實現正確的操作需要使?`x`?的值在操作期間保持不變,而 volatile 變量無法實現這點。(然而,如果將值調整為只從單個線程寫入,那么可以忽略第一個條件。)
大多數編程情形都會與這兩個條件的其中之一沖突,使得 volatile 變量不能像?`synchronized`?那樣普遍適用于實現線程安全。清單 1 顯示了一個非線程安全的數值范圍類。它包含了一個不變式 —— 下界總是小于或等于上界。
##### 清單 1\. 非線程安全的數值范圍類
`@NotThreadSafe`
`public class NumberRange {`
`private int lower, upper;`
`public int getLower() { return lower; }`
`public int getUpper() { return upper; }`
`public void setLower(int value) {`
`if (value > upper)`
`throw new IllegalArgumentException(...);`
`lower = value;`
`}`
`public void setUpper(int value) {`
`if (value < lower)`
`throw new IllegalArgumentException(...);`
`upper = value;`
`}`
`}`
這種方式限制了范圍的狀態變量,因此將?`lower`?和 upper 字段定義為 volatile 類型不能夠充分實現類的線程安全;從而仍然需要使用同步。否則,如果湊巧兩個線程在同一時間使用不一致的值執行?`setLower`?和?`setUpper`?的話,則會使范圍處于不一致的狀態。例如,如果初始狀態是?`(0, 5)`,同一時間內,線程 A 調用?`setLower(4)`?并且線程 B 調用?`setUpper(3)`,顯然這兩個操作交叉存入的值是不符合條件的,那么兩個線程都會通過用于保護不變式的檢查,使得最后的范圍值是?`(4, 3)`?—— 一個無效值。至于針對范圍的其他操作,我們需要使?`setLower()`?和?`setUpper()`?操作原子化 —— 而將字段定義為 volatile 類型是無法實現這一目的的。
### 性能考慮
使用 volatile 變量的主要原因是其簡易性:在某些情形下,使用 volatile 變量要比使用相應的鎖簡單得多。使用 volatile 變量次要原因是其性能:某些情況下,volatile 變量同步機制的性能要優于鎖。
很難做出準確、全面的評價,例如 “X 總是比 Y 快”,尤其是對 JVM 內在的操作而言。(例如,某些情況下 VM 也許能夠完全刪除鎖機制,這使得我們難以抽象地比較?`volatile`?和?`synchronized`?的開銷。)就是說,在目前大多數的處理器架構上,volatile 讀操作開銷非常低 —— 幾乎和非 volatile 讀操作一樣。而 volatile 寫操作的開銷要比非 volatile 寫操作多很多,因為要保證可見性需要實現內存界定(Memory Fence),即便如此,volatile 的總開銷仍然要比鎖獲取低。
volatile 操作不會像鎖一樣造成阻塞,因此,在能夠安全使用 volatile 的情況下,volatile 可以提供一些優于鎖的可伸縮特性。如果讀操作的次數要遠遠超過寫操作,與鎖相比,volatile 變量通常能夠減少同步的性能開銷。
## 正確使用 volatile 的模式
很多并發性專家事實上往往引導用戶遠離 volatile 變量,因為使用它們要比使用鎖更加容易出錯。然而,如果謹慎地遵循一些良好定義的模式,就能夠在很多場合內安全地使用 volatile 變量。要始終牢記使用 volatile 的限制 —— 只有在狀態真正獨立于程序內其他內容時才能使用 volatile —— 這條規則能夠避免將這些模式擴展到不安全的用例。
### 模式 #1:狀態標志
也許實現 volatile 變量的規范使用僅僅是使用一個布爾狀態標志,用于指示發生了一個重要的一次性事件,例如完成初始化或請求停機。
很多應用程序包含了一種控制結構,形式為 “在還沒有準備好停止程序時再執行一些工作”,如清單 2 所示:
##### 清單 2\. 將 volatile 變量作為狀態標志使用
`volatile boolean shutdownRequested;`
`...`
`public void shutdown() { shutdownRequested = true; }`
`public void doWork() {`
`while (!shutdownRequested) {`
`// do stuff`
`}`
`}`
很可能會從循環外部調用?`shutdown()`?方法 —— 即在另一個線程中 —— 因此,需要執行某種同步來確保正確實現?`shutdownRequested`?變量的可見性。(可能會從 JMX 偵聽程序、GUI 事件線程中的操作偵聽程序、通過 RMI 、通過一個 Web 服務等調用)。然而,使用?`synchronized`?塊編寫循環要比使用清單 2 所示的 volatile 狀態標志編寫麻煩很多。由于 volatile 簡化了編碼,并且狀態標志并不依賴于程序內任何其他狀態,因此此處非常適合使用 volatile。
這種類型的狀態標記的一個公共特性是:通常只有一種狀態轉換;`shutdownRequested`?標志從?`false`?轉換為?`true`,然后程序停止。這種模式可以擴展到來回轉換的狀態標志,但是只有在轉換周期不被察覺的情況下才能擴展(從?`false`?到?`true`,再轉換到?`false`)。此外,還需要某些原子狀態轉換機制,例如原子變量。
### 模式 #2:一次性安全發布(one-time safe publication)
缺乏同步會導致無法實現可見性,這使得確定何時寫入對象引用而不是原語值變得更加困難。在缺乏同步的情況下,可能會遇到某個對象引用的更新值(由另一個線程寫入)和該對象狀態的舊值同時存在。(這就是造成著名的雙重檢查鎖定(double-checked-locking)問題的根源,其中對象引用在沒有同步的情況下進行讀操作,產生的問題是您可能會看到一個更新的引用,但是仍然會通過該引用看到不完全構造的對象)。
實現安全發布對象的一種技術就是將對象引用定義為 volatile 類型。清單 3 展示了一個示例,其中后臺線程在啟動階段從數據庫加載一些數據。其他代碼在能夠利用這些數據時,在使用之前將檢查這些數據是否曾經發布過。
##### 清單 3\. 將 volatile 變量用于一次性安全發布
`public class BackgroundFloobleLoader {`
`public volatile Flooble theFlooble;`
`public void initInBackground() {`
`// do lots of stuff`
`theFlooble = new Flooble();? // this is the only write to theFlooble`
`}`
`}`
`public class SomeOtherClass {`
`public void doWork() {`
`while (true) {`
`// do some stuff...`
`// use the Flooble, but only if it is ready`
`if (floobleLoader.theFlooble != null)`
`doSomething(floobleLoader.theFlooble);`
`}`
`}`
`}`
如果?`theFlooble`?引用不是 volatile 類型,`doWork()`?中的代碼在解除對?`theFlooble`?的引用時,將會得到一個不完全構造的?`Flooble`。
該模式的一個必要條件是:被發布的對象必須是線程安全的,或者是有效的不可變對象(有效不可變意味著對象的狀態在發布之后永遠不會被修改)。volatile 類型的引用可以確保對象的發布形式的可見性,但是如果對象的狀態在發布后將發生更改,那么就需要額外的同步。
### 模式 #3:獨立觀察(independent observation)
安全使用 volatile 的另一種簡單模式是:定期 “發布” 觀察結果供程序內部使用。例如,假設有一種環境傳感器能夠感覺環境溫度。一個后臺線程可能會每隔幾秒讀取一次該傳感器,并更新包含當前文檔的 volatile 變量。然后,其他線程可以讀取這個變量,從而隨時能夠看到最新的溫度值。
使用該模式的另一種應用程序就是收集程序的統計信息。清單 4 展示了身份驗證機制如何記憶最近一次登錄的用戶的名字。將反復使用?`lastUser`?引用來發布值,以供程序的其他部分使用。
##### 清單 4\. 將 volatile 變量用于多個獨立觀察結果的發布
`public class UserManager {`
`public volatile String lastUser;`
`public boolean authenticate(String user, String password) {`
`boolean valid = passwordIsValid(user, password);`
`if (valid) {`
`User u = new User();`
`activeUsers.add(u);`
`lastUser = user;`
`}`
`return valid;`
`}`
`}`
該模式是前面模式的擴展;將某個值發布以在程序內的其他地方使用,但是與一次性事件的發布不同,這是一系列獨立事件。這個模式要求被發布的值是有效不可變的 —— 即值的狀態在發布后不會更改。使用該值的代碼需要清楚該值可能隨時發生變化。
### 模式 #4:“volatile bean” 模式
volatile bean 模式適用于將 JavaBeans 作為“榮譽結構”使用的框架。在 volatile bean 模式中,JavaBean 被用作一組具有 getter 和/或 setter 方法 的獨立屬性的容器。volatile bean 模式的基本原理是:很多框架為易變數據的持有者(例如?`HttpSession`)提供了容器,但是放入這些容器中的對象必須是線程安全的。
在 volatile bean 模式中,JavaBean 的所有數據成員都是 volatile 類型的,并且 getter 和 setter 方法必須非常普通 —— 除了獲取或設置相應的屬性外,不能包含任何邏輯。此外,對于對象引用的數據成員,引用的對象必須是有效不可變的。(這將禁止具有數組值的屬性,因為當數組引用被聲明為?`volatile`?時,只有引用而不是數組本身具有 volatile 語義)。對于任何 volatile 變量,不變式或約束都不能包含 JavaBean 屬性。清單 5 中的示例展示了遵守 volatile bean 模式的 JavaBean:
##### 清單 5\. 遵守 volatile bean 模式的 Person 對象
`@ThreadSafe`
`public class Person {`
`private volatile String firstName;`
`private volatile String lastName;`
`private volatile int age;`
`public String getFirstName() { return firstName; }`
`public String getLastName() { return lastName; }`
`public int getAge() { return age; }`
`public void setFirstName(String firstName) {`
`this.firstName = firstName;`
`}`
`public void setLastName(String lastName) {`
`this.lastName = lastName;`
`}`
`public void setAge(int age) {`
`this.age = age;`
`}`
`}`
## volatile 的高級模式
前面幾節介紹的模式涵蓋了大部分的基本用例,在這些模式中使用 volatile 非常有用并且簡單。這一節將介紹一種更加高級的模式,在該模式中,volatile 將提供性能或可伸縮性優勢。
volatile 應用的的高級模式非常脆弱。因此,必須對假設的條件仔細證明,并且這些模式被嚴格地封裝了起來,因為即使非常小的更改也會損壞您的代碼!同樣,使用更高級的 volatile 用例的原因是它能夠提升性能,確保在開始應用高級模式之前,真正確定需要實現這種性能獲益。需要對這些模式進行權衡,放棄可讀性或可維護性來換取可能的性能收益 —— 如果您不需要提升性能(或者不能夠通過一個嚴格的測試程序證明您需要它),那么這很可能是一次糟糕的交易,因為您很可能會得不償失,換來的東西要比放棄的東西價值更低。
### 模式 #5:開銷較低的讀-寫鎖策略
目前為止,您應該了解了 volatile 的功能還不足以實現計數器。因為?`++x`?實際上是三種操作(讀、添加、存儲)的簡單組合,如果多個線程湊巧試圖同時對 volatile 計數器執行增量操作,那么它的更新值有可能會丟失。
然而,如果讀操作遠遠超過寫操作,您可以結合使用內部鎖和 volatile 變量來減少公共代碼路徑的開銷。清單 6 中顯示的線程安全的計數器使用?`synchronized`?確保增量操作是原子的,并使用?`volatile`?保證當前結果的可見性。如果更新不頻繁的話,該方法可實現更好的性能,因為讀路徑的開銷僅僅涉及 volatile 讀操作,這通常要優于一個無競爭的鎖獲取的開銷。
##### 清單 6\. 結合使用 volatile 和 synchronized 實現 “開銷較低的讀-寫鎖”
`@ThreadSafe`
`public class CheesyCounter {`
`// Employs the cheap read-write lock trick`
`// All mutative operations MUST be done with the 'this' lock held`
`@GuardedBy("this") private volatile int value;`
`public int getValue() { return value; }`
`public synchronized int increment() {`
`return value++;`
`}`
`}`
之所以將這種技術稱之為 “開銷較低的讀-寫鎖” 是因為您使用了不同的同步機制進行讀寫操作。因為本例中的寫操作違反了使用 volatile 的第一個條件,因此不能使用 volatile 安全地實現計數器 —— 您必須使用鎖。然而,您可以在讀操作中使用 volatile 確保當前值的*可見性*,因此可以使用鎖進行所有變化的操作,使用 volatile 進行只讀操作。其中,鎖一次只允許一個線程訪問值,volatile 允許多個線程執行讀操作,因此當使用 volatile 保證讀代碼路徑時,要比使用鎖執行全部代碼路徑獲得更高的共享度 —— 就像讀-寫操作一樣。然而,要隨時牢記這種模式的弱點:如果超越了該模式的最基本應用,結合這兩個競爭的同步機制將變得非常困難。
## 結束語
與鎖相比,Volatile 變量是一種非常簡單但同時又非常脆弱的同步機制,它在某些情況下將提供優于鎖的性能和伸縮性。如果嚴格遵循 volatile 的使用條件 —— 即變量真正獨立于其他變量和自己以前的值 —— 在某些情況下可以使用?`volatile`?代替?`synchronized`?來簡化代碼。然而,使用?`volatile`?的代碼往往比使用鎖的代碼更加容易出錯。本文介紹的模式涵蓋了可以使用?`volatile`?代替?`synchronized`?的最常見的一些用例。遵循這些模式(注意使用時不要超過各自的限制)可以幫助您安全地實現大多數用例,使用 volatile 變量獲得更佳性能。
#### 相關主題
* 您可以參閱本文在 developerWorks 全球站點上的?[英文原文](http://www.ibm.com/developerworks/java/library/j-jtp06197.html?S_TACT=105AGX52&S_CMP=cn-a-j)?。
* [*Java Concurrency in Practice*](http://www.amazon.com/exec/obidos/ASIN/0321349601/ref=nosim/none0b69):使用 Java 代碼開發并發程序的 how-to 手冊,內容包括構建并編寫線程安全的類和程序、避免性能影響、管理性能和測試并發應用程序。
* [流行的原子](http://www.ibm.com/developerworks/cn/java/j-jtp11234/):介紹了 Java 5.0 中新增的原子變量類,該特性對 volatile 變量進行了擴展,從而支持原子狀態轉換。
* [非阻塞算法簡介](http://www.ibm.com/developerworks/cn/java/j-jtp04186/):介紹如何使用原子變量而不是鎖實現并發算法。
* [Volatiles](http://en.wikipedia.org/wiki/Volatile_variable):從 Wikipedia 獲得關于 volatile 變量的更多信息。
* [Java 技術專區](http://www.ibm.com/developerworks/cn/java/):提供了數百篇有關 Java 編程各個方面的文章。
- JVM
- 深入理解Java內存模型
- 深入理解Java內存模型(一)——基礎
- 深入理解Java內存模型(二)——重排序
- 深入理解Java內存模型(三)——順序一致性
- 深入理解Java內存模型(四)——volatile
- 深入理解Java內存模型(五)——鎖
- 深入理解Java內存模型(六)——final
- 深入理解Java內存模型(七)——總結
- Java內存模型
- Java內存模型2
- 堆內內存還是堆外內存?
- JVM內存配置詳解
- Java內存分配全面淺析
- 深入Java核心 Java內存分配原理精講
- jvm常量池
- JVM調優總結
- JVM調優總結(一)-- 一些概念
- JVM調優總結(二)-一些概念
- VM調優總結(三)-基本垃圾回收算法
- JVM調優總結(四)-垃圾回收面臨的問題
- JVM調優總結(五)-分代垃圾回收詳述1
- JVM調優總結(六)-分代垃圾回收詳述2
- JVM調優總結(七)-典型配置舉例1
- JVM調優總結(八)-典型配置舉例2
- JVM調優總結(九)-新一代的垃圾回收算法
- JVM調優總結(十)-調優方法
- 基礎
- Java 征途:行者的地圖
- Java程序員應該知道的10個面向對象理論
- Java泛型總結
- 序列化與反序列化
- 通過反編譯深入理解Java String及intern
- android 加固防止反編譯-重新打包
- volatile
- 正確使用 Volatile 變量
- 異常
- 深入理解java異常處理機制
- Java異常處理的10個最佳實踐
- Java異常處理手冊和最佳實踐
- Java提高篇——對象克隆(復制)
- Java中如何克隆集合——ArrayList和HashSet深拷貝
- Java中hashCode的作用
- Java提高篇之hashCode
- 常見正則表達式
- 類
- 理解java類加載器以及ClassLoader類
- 深入探討 Java 類加載器
- 類加載器的工作原理
- java反射
- 集合
- HashMap的工作原理
- ConcurrentHashMap之實現細節
- java.util.concurrent 之ConcurrentHashMap 源碼分析
- HashMap的實現原理和底層數據結構
- 線程
- 關于Java并發編程的總結和思考
- 40個Java多線程問題總結
- Java中的多線程你只要看這一篇就夠了
- Java多線程干貨系列(1):Java多線程基礎
- Java非阻塞算法簡介
- Java并發的四種風味:Thread、Executor、ForkJoin和Actor
- Java中不同的并發實現的性能比較
- JAVA CAS原理深度分析
- 多個線程之間共享數據的方式
- Java并發編程
- Java并發編程(1):可重入內置鎖
- Java并發編程(2):線程中斷(含代碼)
- Java并發編程(3):線程掛起、恢復與終止的正確方法(含代碼)
- Java并發編程(4):守護線程與線程阻塞的四種情況
- Java并發編程(5):volatile變量修飾符—意料之外的問題(含代碼)
- Java并發編程(6):Runnable和Thread實現多線程的區別(含代碼)
- Java并發編程(7):使用synchronized獲取互斥鎖的幾點說明
- Java并發編程(8):多線程環境中安全使用集合API(含代碼)
- Java并發編程(9):死鎖(含代碼)
- Java并發編程(10):使用wait/notify/notifyAll實現線程間通信的幾點重要說明
- java并發編程-II
- Java多線程基礎:進程和線程之由來
- Java并發編程:如何創建線程?
- Java并發編程:Thread類的使用
- Java并發編程:synchronized
- Java并發編程:Lock
- Java并發編程:volatile關鍵字解析
- Java并發編程:深入剖析ThreadLocal
- Java并發編程:CountDownLatch、CyclicBarrier和Semaphore
- Java并發編程:線程間協作的兩種方式:wait、notify、notifyAll和Condition
- Synchronized與Lock
- JVM底層又是如何實現synchronized的
- Java synchronized詳解
- synchronized 與 Lock 的那點事
- 深入研究 Java Synchronize 和 Lock 的區別與用法
- JAVA編程中的鎖機制詳解
- Java中的鎖
- TreadLocal
- 深入JDK源碼之ThreadLocal類
- 聊一聊ThreadLocal
- ThreadLocal
- ThreadLocal的內存泄露
- 多線程設計模式
- Java多線程編程中Future模式的詳解
- 原子操作(CAS)
- [譯]Java中Wait、Sleep和Yield方法的區別
- 線程池
- 如何合理地估算線程池大小?
- JAVA線程池中隊列與池大小的關系
- Java四種線程池的使用
- 深入理解Java之線程池
- java并發編程III
- Java 8并發工具包漫游指南
- 聊聊并發
- 聊聊并發(一)——深入分析Volatile的實現原理
- 聊聊并發(二)——Java SE1.6中的Synchronized
- 文件
- 網絡
- index
- 內存文章索引
- 基礎文章索引
- 線程文章索引
- 網絡文章索引
- IOC
- 設計模式文章索引
- 面試
- Java常量池詳解之一道比較蛋疼的面試題
- 近5年133個Java面試問題列表
- Java工程師成神之路
- Java字符串問題Top10
- 設計模式
- Java:單例模式的七種寫法
- Java 利用枚舉實現單例模式
- 常用jar
- HttpClient和HtmlUnit的比較總結
- IO
- NIO
- NIO入門
- 注解
- Java Annotation認知(包括框架圖、詳細介紹、示例說明)