我們假設有一個集群由三個節點組成。 它包含一個叫 emps 的索引,有兩個主分片,每個主分片有兩個副本分片。相同分片的副本不會放在同一節點。
```json
PUT /emps
{
"settings" : {
"number_of_shards" : 2, #2個主分片
"number_of_replicas" : 2 #每個分片2個副本,所以總共有6個分片
}
}
```
通過 elasticsearch-head 插件查看集群情況,所以我們的集群是一個有三個節點和一個索引的集群。

<br/>
我們可以發送請求到集群中的任一節點。 每個節點都有能力處理任意請求。 每個節點都知道集群中任一文檔位置,所以可以直接將請求轉發到需要的節點上。 在下面的例子中,將所有的請求發送到 Node 1,我們將其稱為<mark>協調節點(coordinating node) </mark>。
>[info]當發送請求的時候, 為了擴展負載,更好的做法是輪詢集群中所有的節點。
- Elasticsearch是什么
- 全文搜索引擎
- Elasticsearch與Solr
- 數據結構
- 安裝Elasticsearch
- Linux單機安裝
- Windows單機安裝
- 安裝Kibana
- Linux安裝
- Windows安裝
- es基本語句
- 索引操作
- 文檔操作
- 映射操作
- 高級查詢
- es-JavaAPI
- maven依賴
- 索引操作
- 文檔操作
- 高級查詢
- es集群搭建
- Linux集群搭建
- Windows集群搭建
- 核心概念
- 索引(Index)
- 類型(Type)
- 文檔(Document)
- 字段(Field)
- 映射(Mapping)
- 分片(Shards)
- 副本(Replicas)
- 分配(Allocation)
- 系統架構
- 分布式集群
- 單節點集群
- 故障轉移
- 水平擴容
- 應對故障
- 路由計算
- 分片控制
- 寫流程
- 讀流程
- 更新流程
- 多文檔操作流程
- 分片原理
- 倒排索引
- 文檔搜索
- 動態更新索引
- 近實時搜索
- 持久化變更
- 段合并
- 文檔分析
- 內置分析器
- 分析器使用場景
- 測試分析器
- 指定分析器
- 自定義分析器
- 文檔處理
- 文檔沖突
- 樂觀并發控制
- 外部系統版本控制
- es優化
- 硬件選擇
- 分片策略
- 合理設置分片數
- 推遲分片分配
- 路由選擇
- 寫入速度優化
- 批量數據提交
- 優化存儲設備
- 合理使用合并
- 減少Refresh的次數
- 加大Flush設置
- 減少副本的數量
- 內存設置
- 重要配置
- es常見問題
- 為什么要使用Elasticsearch
- master選舉流程
- 集群腦裂問題
- 索引文檔流程
- 更新和刪除文檔流程
- 搜索流程
- ES部署在Linux時的優化方法
- GC方面ES需要注意的點
- ES對大數據量的聚合實現
- 并發時保證讀寫一致性
- 字典樹
- ES的倒排索引
- Spring Data Elasticsearch
- 環境搭建
- 索引操作
- 文檔操作