(1)Elasticsearch 的選主是 ZenDiscovery 模塊負責的,主要包含 Ping(節點之間通過這個 RPC 來發現彼此)和 Unicast(單播模塊包含一個主機列表以控制哪些節點需要 ping 通)這兩部分。
(2)對所有可以成為 master 的節點(`node.master: true`)根據 nodeId 字典排序,每次選舉每個節點都把自己所知道節點排一次序,然后選出第一個(第 0 位)節點,暫且認為它是 master 節點。
(3)如果對某個節點的投票數達到一定的值(`n/2+1`、`n`為可以成為 master 節點的數)并且該節點自己也選舉自己,那這個節點就是 master。否則重新選舉一直到滿足上述條件。
(4)master 節點的職責主要包括集群、節點和索引的管理,不負責文檔級別的管理;data 節點可以關閉 http功能。
- Elasticsearch是什么
- 全文搜索引擎
- Elasticsearch與Solr
- 數據結構
- 安裝Elasticsearch
- Linux單機安裝
- Windows單機安裝
- 安裝Kibana
- Linux安裝
- Windows安裝
- es基本語句
- 索引操作
- 文檔操作
- 映射操作
- 高級查詢
- es-JavaAPI
- maven依賴
- 索引操作
- 文檔操作
- 高級查詢
- es集群搭建
- Linux集群搭建
- Windows集群搭建
- 核心概念
- 索引(Index)
- 類型(Type)
- 文檔(Document)
- 字段(Field)
- 映射(Mapping)
- 分片(Shards)
- 副本(Replicas)
- 分配(Allocation)
- 系統架構
- 分布式集群
- 單節點集群
- 故障轉移
- 水平擴容
- 應對故障
- 路由計算
- 分片控制
- 寫流程
- 讀流程
- 更新流程
- 多文檔操作流程
- 分片原理
- 倒排索引
- 文檔搜索
- 動態更新索引
- 近實時搜索
- 持久化變更
- 段合并
- 文檔分析
- 內置分析器
- 分析器使用場景
- 測試分析器
- 指定分析器
- 自定義分析器
- 文檔處理
- 文檔沖突
- 樂觀并發控制
- 外部系統版本控制
- es優化
- 硬件選擇
- 分片策略
- 合理設置分片數
- 推遲分片分配
- 路由選擇
- 寫入速度優化
- 批量數據提交
- 優化存儲設備
- 合理使用合并
- 減少Refresh的次數
- 加大Flush設置
- 減少副本的數量
- 內存設置
- 重要配置
- es常見問題
- 為什么要使用Elasticsearch
- master選舉流程
- 集群腦裂問題
- 索引文檔流程
- 更新和刪除文檔流程
- 搜索流程
- ES部署在Linux時的優化方法
- GC方面ES需要注意的點
- ES對大數據量的聚合實現
- 并發時保證讀寫一致性
- 字典樹
- ES的倒排索引
- Spring Data Elasticsearch
- 環境搭建
- 索引操作
- 文檔操作