<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                **張量**(tensor):一個數據容器 矩陣->二維張量=>張量是矩陣向任意維度的推廣 **軸**(axis):張量的**維度**(dimension) **階**(rank):張量軸的個數,ndim **標量**(scalar,也叫標量張量、零維張量、0D 張量): 僅包含一個數字的張量; 在 Numpy 中,一個`float32`或`float64`的數字就是一個標量張量(或標量數組)。 #### eg:`np.array(12).ndim >> 0` **向量**(vector):一維**張量**(1D **張量**),只有一個軸。 第一個軸是**樣本軸**,第二個軸是**特征軸** #### eg:`np.array([12, 3, 6, 14, 7]).ndim >> 1`,這個數組有5個元素,叫**5D向量** **矩陣**(matrix):二維**張量**(2D **張量**)。矩陣有 2 個軸(通常叫作**行**和**列**) #### eg: ~~~ np.array([[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]]).nidm >> 2 ~~~ **3D 張量**: #### eg: ~~~ np.array([[[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]]]).nidm >> 3 ~~~ * **向量數據**:2D 張量,形狀為`(samples, features)`。 * **時間序列數據**或**序列數據**:3D 張量,形狀為`(samples, timesteps, features)`。 * **圖像**:4D 張量,形狀為`(samples, height, width, channels)`或`(samples, channels, height, width)`。 * **視頻**:5D 張量,形狀為`(samples, frames, height, width, channels)`或`(samples, frames, channels, height, width)`。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看