<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                給定一些訓練數據和一種網絡架構,很多組權重值(即很多**模型**)都可以解釋這些數據。 **簡單模型**比復雜模型更不容易過擬合。 ***** ## **權重正則化**(weight regularization): **簡單模型**(simple model)是指參數值分布的熵更小的模型 強制讓模型權重只能取較小的值,從而限制模型的復雜度,這使得權重值的分布更加**規則** * 向網絡損失函數中添加與較大權重值相關的**成本**(cost) **成本**(cost): * **L1 正則化**(L1 regularization):添加的成本與**權重系數的絕對值**[權重的**L1 范數**(norm)]成正比。 * **L2 正則化**(L2 regularization):添加的成本與**權重系數的平方**(權重的**L2 范數**)成正比,又稱**權重衰減**(weight decay) 在Keras中使用:添加權重正則化的方法是向層傳遞**權重正則化項實例**(weight regularizer instance)作為關鍵字參數 ~~~ model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation='relu', input_shape=(10000,))) ~~~ kernel_regularizer=regularizers.l2(0.001): `l2(0.001)`的意思是該層權重矩陣的每個系數都會使網絡總損失增加`0.001 * weight_coefficient_value`
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看