<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                **構建網絡** 通過疊加`Dense`層來構建網絡: `keras.layers.Dense(512, activation='relu')` =![](https://img.kancloud.cn/6d/db/6ddb995db4baa6b87b38f78e22f926eb_254x143.png) 這個**層**(layers)就是一個函數 層的**權重**。權重是利用隨機梯度下降學到的一個或多個張量,其中包含網絡的**知識**。 **逐元素運算**(element-wise):該運算獨立地應用于張量中的每個元素 ``` #relu運算 def naive_relu(x): assert len(x.shape) == 2 x = x.copy() for i in range(x.shape[0]): for j in range(x.shape[1]): x[i, j] = max(x[i, j], 0) return x #加法 def naive_add(x, y): assert len(x.shape) == 2 assert x.shape == y.shape x = x.copy() for i in range(x.shape[0]): for j in range(x.shape[1]): x[i, j] += y[i, j] return x ``` **廣播**(broadcast):(只出現在算法中,而沒有發生在內存中) 兩個形狀不同的張量相加,較小的張量會被**廣播**: 1. 向較小的張量添加軸(叫作**廣播軸**),使其`ndim`與較大的張量相同。 2. 將較小的張量沿著新軸重復,使其形狀與較大的張量相同。 ***** **張量積**(tensor produc,點積運算):~~‘*’逐元素乘積~~ `dot`運算符,實現點積 (只有元素個數相同的向量之間才能做點積) ~~~ np.dot(x, y) <=> x.y ~~~ **張量變形**(tensor reshaping):改變張量的行和列,以得到想要的形狀 **轉置**(transposition):將行和列互換
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看