<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                1. **定義**訓練數據:**輸入**張量和**目標**張量。 2. **定義**層組成的網絡(或模型),將輸入**映射**到目標。 Sequential類(僅用于層的線性堆疊,這是目前最常見的網絡架構) ``` from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(32, activation='relu', input_shape=(784,))) model.add(layers.Dense(10, activation='softmax')) ``` 函數式 API(functional API,用于層組成的有向無環圖,讓你可以構建任意形式的架構) ``` input_tensor = layers.Input(shape=(784,)) x = layers.Dense(32, activation='relu')(input_tensor) output_tensor = layers.Dense(10, activation='softmax')(x) model = models.Model(inputs=input_tensor, outputs=output_tensor) ``` 3. **配置**學習過程:選擇損失函數、優化器和需要監控的指標。 ``` 指定模型使用的優化器和損失函數,以及訓練過程中想要監控的指標 單一損失函數: from keras import optimizers model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss='mse', metrics=['accuracy']) ``` 4. **調用**模型的**fit**方法在訓練數據上進行迭代 ``` 將輸入數據的 Numpy 數組(和對應的目標數據)傳入模型 model.fit(input_tensor, target_tensor, batch_size=128, epochs=10) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看