**修正線性單元**
**激活函數(activation function)**
使用神經網絡時的,起始激活神經網絡層(先理解到這地步)
*****
*仿生物學原理:相關大腦方面的研究表明生物神經元的信息編碼通常是比較分散及稀疏的。通常情況下,大腦中在同一時間大概只有1%-4%的神經元處于活躍狀態。使用線性修正以及正則化(regularization)可以對機器神經網絡中神經元的活躍度(即輸出為正值)進行調試;相比之下,邏輯函數在輸入為0時達到1/2,即已經是半飽和的穩定狀態,不夠符合實際生物學對模擬神經網絡的期望。不過需要指出的是,一般情況下,在一個使用修正線性單元(即線性整流)的神經網絡中大概有50%的神經元處于激活態。*
*****
**什么是激活函數?為什么要使用激活函數?**
如果沒有`relu`等激活函數(也叫**非線性**),`Dense`層將只包含兩個線性運算——點積和加法
```
output = relu(dot(W, input) + b)
```
這樣Dense層就只能學習輸入數據的線性變換(仿射變換):該層的假設空間是從輸入數據到16位空間所有可能的線性變換集合。
**這種假設空間非常有限**,無法利用多個表示層的優勢,因為多個線性層堆疊實現的**仍是線性運算**,添加層數并**不會擴展假設空間**。
`relu`是深度學習中最常用的激活函數,但還有許多其他函數可選,它們都有類似的奇怪名稱,比如`prelu`、`elu`等。
- 基礎
- 張量tensor
- 整數序列(列表)=>張量
- 張量運算
- 張量運算的幾何解釋
- 層:深度學習的基礎組件
- 模型:層構成的網絡
- 訓練循環 (training loop)
- 數據類型與層類型、keras
- Keras
- Keras 開發
- Keras使用本地數據
- fit、predict、evaluate
- K 折 交叉驗證
- 二分類問題-基于梯度的優化-訓練
- relu運算
- Dens
- 損失函數與優化器:配置學習過程的關鍵
- 損失-二分類問題
- 優化器
- 過擬合 (overfit)
- 改進
- 小結
- 多分類問題
- 回歸問題
- 章節小結
- 機械學習
- 訓練集、驗證集和測試集
- 三種經典的評估方法
- 模型評估
- 如何準備輸入數據和目標?
- 過擬合與欠擬合
- 減小網絡大小
- 添加權重正則化
- 添加 dropout 正則化
- 通用工作流程
- 計算機視覺
- 卷積神經網絡
- 卷積運算
- 卷積的工作原理
- 訓練一個卷積神經網絡
- 使用預訓練的卷積神經網絡
- VGG16
- VGG16詳細結構
- 為什么不微調整個卷積基?
- 卷積神經網絡的可視化
- 中間輸出(中間激活)
- 過濾器
- 熱力圖
- 文本和序列
- 處理文本數據
- n-gram
- one-hot 編碼 (one-hot encoding)
- 標記嵌入 (token embedding)
- 利用 Embedding 層學習詞嵌入
- 使用預訓練的詞嵌入
- 循環神經網絡
- 循環神經網絡的高級用法
- 溫度預測問題
- code
- 用卷積神經網絡處理序列
- GRU 層
- LSTM層
- 多輸入模型
- 回調函數
- ModelCheckpoint 與 EarlyStopping
- ReduceLROnPlateau
- 自定義回調函數
- TensorBoard_TensorFlow 的可視化框架
- 高級架構模式
- 殘差連接
- 批標準化
- 批再標準化
- 深度可分離卷積
- 超參數優化
- 模型集成
- LSTM
- DeepDream
- 神經風格遷移
- 變分自編碼器
- 生成式對抗網絡
- 術語表