# 3.8 檢測Boost庫
**NOTE**:*此示例代碼可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-03/recipe-08 中找到,包含一個C++的示例。該示例在CMake 3.5版(或更高版本)中是有效的,并且已經在GNU/Linux、macOS和Windows上進行過測試。*
Boost是一組C++通用庫。這些庫提供了許多功能,這些功能在現代C++項目中不可或缺,但是還不能通過C++標準使用這些功能。例如,Boost為元編程、處理可選參數和文件系統操作等提供了相應的組件。這些庫中有許多特性后來被C++11、C++14和C++17標準所采用,但是對于保持與舊編譯器兼容性的代碼庫來說,許多Boost組件仍然是首選。
本示例將向您展示如何檢測和鏈接Boost庫的一些組件。
## 準備工作
我們將編譯的源碼是Boost提供的文件系統庫與文件系統交互的示例。這個庫可以跨平臺使用,并將操作系統和文件系統之間的差異抽象為一致的API。下面的代碼(`path-info.cpp`)將接受一個路徑作為參數,并將其組件的報告打印到屏幕上:
```c++
#include <iostream>
#include <boost/filesystem.hpp>
using namespace std;
using namespace boost::filesystem;
const char *say_what(bool b) { return b ? "true" : "false"; }
int main(int argc, char *argv[])
{
if (argc < 2)
{
cout
<< "Usage: path_info path-element [path-element...]\n"
"Composes a path via operator/= from one or more path-element arguments\n"
"Example: path_info foo/bar baz\n"
#ifdef BOOST_POSIX_API
" would report info about the composed path foo/bar/baz\n";
#else // BOOST_WINDOWS_API
" would report info about the composed path foo/bar\\baz\n";
#endif
return 1;
}
path p;
for (; argc > 1; --argc, ++argv)
p /= argv[1]; // compose path p from the command line arguments
cout << "\ncomposed path:\n";
cout << " operator<<()---------: " << p << "\n";
cout << " make_preferred()-----: " << p.make_preferred() << "\n";
cout << "\nelements:\n";
for (auto element : p)
cout << " " << element << '\n';
cout << "\nobservers, native format:" << endl;
#ifdef BOOST_POSIX_API
cout << " native()-------------: " << p.native() << endl;
cout << " c_str()--------------: " << p.c_str() << endl;
#else // BOOST_WINDOWS_API
wcout << L" native()-------------: " << p.native() << endl;
wcout << L" c_str()--------------: " << p.c_str() << endl;
#endif
cout << " string()-------------: " << p.string() << endl;
wcout << L" wstring()------------: " << p.wstring() << endl;
cout << "\nobservers, generic format:\n";
cout << " generic_string()-----: " << p.generic_string() << endl;
wcout << L" generic_wstring()----: " << p.generic_wstring() << endl;
cout << "\ndecomposition:\n";
cout << " root_name()----------: " << p.root_name() << '\n';
cout << " root_directory()-----: " << p.root_directory() << '\n';
cout << " root_path()----------: " << p.root_path() << '\n';
cout << " relative_path()------: " << p.relative_path() << '\n';
cout << " parent_path()--------: " << p.parent_path() << '\n';
cout << " filename()-----------: " << p.filename() << '\n';
cout << " stem()---------------: " << p.stem() << '\n';
cout << " extension()----------: " << p.extension() << '\n';
cout << "\nquery:\n";
cout << " empty()--------------: " << say_what(p.empty()) << '\n';
cout << " is_absolute()--------: " << say_what(p.is_absolute()) << '\n';
cout << " has_root_name()------: " << say_what(p.has_root_name()) << '\n';
cout << " has_root_directory()-: " << say_what(p.has_root_directory()) << '\n';
cout << " has_root_path()------: " << say_what(p.has_root_path()) << '\n';
cout << " has_relative_path()--: " << say_what(p.has_relative_path()) << '\n';
cout << " has_parent_path()----: " << say_what(p.has_parent_path()) << '\n';
cout << " has_filename()-------: " << say_what(p.has_filename()) << '\n';
cout << " has_stem()-----------: " << say_what(p.has_stem()) << '\n';
cout << " has_extension()------: " << say_what(p.has_extension()) << '\n';
return 0;
}
```
## 具體實施
Boost由許多不同的庫組成,這些庫可以獨立使用。CMake可將這個庫集合,表示為組件的集合。`FindBoost.cmake`模塊不僅可以搜索庫集合的完整安裝,還可以搜索集合中的特定組件及其依賴項(如果有的話)。我們將逐步建立相應的`CMakeLists.txt`:
1. 首先,聲明CMake最低版本、項目名稱、語言,并使用C++11標準:
```cmake
cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
project(recipe-08 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
```
2. 然后,使用`find_package`搜索Boost。若需要對Boost強制性依賴,需要一個參數。這個例子中,只需要文件系統組件,所以將它作為參數傳遞給`find_package`:
```cmake
find_package(Boost 1.54 REQUIRED COMPONENTS filesystem)
```
3. 添加可執行目標,編譯源文件:
```cmake
add_executable(path-info path-info.cpp)
```
4. 最后,將目標鏈接到Boost庫組件。由于依賴項聲明為`PUBLIC`,依賴于Boost的目標將自動獲取依賴項:
```cmake
target_link_libraries(path-info
PUBLIC
Boost::filesystem
)
```
## 工作原理
`FindBoost.cmake `是本示例中所使用的CMake模塊,其會在標準系統安裝目錄中找到Boost庫。由于我們鏈接的是`Boost::filesystem`,CMake將自動設置包含目錄并調整編譯和鏈接標志。如果Boost庫安裝在非標準位置,可以在配置時使用`BOOST_ROOT`變量傳遞Boost安裝的根目錄,以便讓CMake搜索非標準路徑:
```shell
$ cmake -D BOOST_ROOT=/custom/boost
```
或者,可以同時傳遞包含頭文件的`BOOST_INCLUDEDIR`變量和庫目錄的`BOOST_LIBRARYDIR`變量:
```shell
$ cmake -D BOOST_INCLUDEDIR=/custom/boost/include -DBOOST_LIBRARYDIR=/custom/boost/lib
```
- Introduction
- 前言
- 第0章 配置環境
- 0.1 獲取代碼
- 0.2 Docker鏡像
- 0.3 安裝必要的軟件
- 0.4 測試環境
- 0.5 上報問題并提出改進建議
- 第1章 從可執行文件到庫
- 1.1 將單個源文件編譯為可執行文件
- 1.2 切換生成器
- 1.3 構建和鏈接靜態庫和動態庫
- 1.4 用條件句控制編譯
- 1.5 向用戶顯示選項
- 1.6 指定編譯器
- 1.7 切換構建類型
- 1.8 設置編譯器選項
- 1.9 為語言設定標準
- 1.10 使用控制流
- 第2章 檢測環境
- 2.1 檢測操作系統
- 2.2 處理與平臺相關的源代碼
- 2.3 處理與編譯器相關的源代碼
- 2.4 檢測處理器體系結構
- 2.5 檢測處理器指令集
- 2.6 為Eigen庫使能向量化
- 第3章 檢測外部庫和程序
- 3.1 檢測Python解釋器
- 3.2 檢測Python庫
- 3.3 檢測Python模塊和包
- 3.4 檢測BLAS和LAPACK數學庫
- 3.5 檢測OpenMP的并行環境
- 3.6 檢測MPI的并行環境
- 3.7 檢測Eigen庫
- 3.8 檢測Boost庫
- 3.9 檢測外部庫:Ⅰ. 使用pkg-config
- 3.10 檢測外部庫:Ⅱ. 自定義find模塊
- 第4章 創建和運行測試
- 4.1 創建一個簡單的單元測試
- 4.2 使用Catch2庫進行單元測試
- 4.3 使用Google Test庫進行單元測試
- 4.4 使用Boost Test進行單元測試
- 4.5 使用動態分析來檢測內存缺陷
- 4.6 預期測試失敗
- 4.7 使用超時測試運行時間過長的測試
- 4.8 并行測試
- 4.9 運行測試子集
- 4.10 使用測試固件
- 第5章 配置時和構建時的操作
- 5.1 使用平臺無關的文件操作
- 5.2 配置時運行自定義命令
- 5.3 構建時運行自定義命令:Ⅰ. 使用add_custom_command
- 5.4 構建時運行自定義命令:Ⅱ. 使用add_custom_target
- 5.5 構建時為特定目標運行自定義命令
- 5.6 探究編譯和鏈接命令
- 5.7 探究編譯器標志命令
- 5.8 探究可執行命令
- 5.9 使用生成器表達式微調配置和編譯
- 第6章 生成源碼
- 6.1 配置時生成源碼
- 6.2 使用Python在配置時生成源碼
- 6.3 構建時使用Python生成源碼
- 6.4 記錄項目版本信息以便報告
- 6.5 從文件中記錄項目版本
- 6.6 配置時記錄Git Hash值
- 6.7 構建時記錄Git Hash值
- 第7章 構建項目
- 7.1 使用函數和宏重用代碼
- 7.2 將CMake源代碼分成模塊
- 7.3 編寫函數來測試和設置編譯器標志
- 7.4 用指定參數定義函數或宏
- 7.5 重新定義函數和宏
- 7.6 使用廢棄函數、宏和變量
- 7.7 add_subdirectory的限定范圍
- 7.8 使用target_sources避免全局變量
- 7.9 組織Fortran項目
- 第8章 超級構建模式
- 8.1 使用超級構建模式
- 8.2 使用超級構建管理依賴項:Ⅰ.Boost庫
- 8.3 使用超級構建管理依賴項:Ⅱ.FFTW庫
- 8.4 使用超級構建管理依賴項:Ⅲ.Google Test框架
- 8.5 使用超級構建支持項目
- 第9章 語言混合項目
- 9.1 使用C/C++庫構建Fortran項目
- 9.2 使用Fortran庫構建C/C++項目
- 9.3 使用Cython構建C++和Python項目
- 9.4 使用Boost.Python構建C++和Python項目
- 9.5 使用pybind11構建C++和Python項目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 編寫安裝程序
- 10.1 安裝項目
- 10.2 生成輸出頭文件
- 10.3 輸出目標
- 10.4 安裝超級構建
- 第11章 打包項目
- 11.1 生成源代碼和二進制包
- 11.2 通過PyPI發布使用CMake/pybind11構建的C++/Python項目
- 11.3 通過PyPI發布使用CMake/CFFI構建C/Fortran/Python項目
- 11.4 以Conda包的形式發布一個簡單的項目
- 11.5 將Conda包作為依賴項發布給項目
- 第12章 構建文檔
- 12.1 使用Doxygen構建文檔
- 12.2 使用Sphinx構建文檔
- 12.3 結合Doxygen和Sphinx
- 第13章 選擇生成器和交叉編譯
- 13.1 使用CMake構建Visual Studio 2017項目
- 13.2 交叉編譯hello world示例
- 13.3 使用OpenMP并行化交叉編譯Windows二進制文件
- 第14章 測試面板
- 14.1 將測試部署到CDash
- 14.2 CDash顯示測試覆蓋率
- 14.3 使用AddressSanifier向CDash報告內存缺陷
- 14.4 使用ThreadSaniiser向CDash報告數據爭用
- 第15章 使用CMake構建已有項目
- 15.1 如何開始遷移項目
- 15.2 生成文件并編寫平臺檢查
- 15.3 檢測所需的鏈接和依賴關系
- 15.4 復制編譯標志
- 15.5 移植測試
- 15.6 移植安裝目標
- 15.7 進一步遷移的措施
- 15.8 項目轉換為CMake的常見問題
- 第16章 可能感興趣的書
- 16.1 留下評論——讓其他讀者知道你的想法