# 13.3 使用OpenMP并行化交叉編譯Windows二進制文件
**NOTE**:*此示例代碼可以在 https://github.com/dev-cafe/cmake-cookbook/tree/v1.0/chapter-13/recipe-02 中找到,其中包含一個C++示例和Fortran示例。該示例在CMake 3.5版(或更高版本)中是有效的,并且已經在GNU/Linux、macOS和Windows上進行過測試。*
在這個示例中,我們將交叉編譯一個OpenMP并行化的Windows二進制文件。
## 準備工作
我們將使用第3章第5節中的未修改的源代碼,示例代碼將所有自然數加到N (`example.cpp`):
```c++
#include <iostream>
#include <omp.h>
#include <string>
int main(int argc, char *argv[]) {
std::cout << "number of available processors: " << omp_get_num_procs()
<< std::endl;
std::cout << "number of threads: " << omp_get_max_threads() << std::endl;
auto n = std::stol(argv[1]);
std::cout << "we will form sum of numbers from 1 to " << n << std::endl;
// start timer
auto t0 = omp_get_wtime();
auto s = 0LL;
#pragma omp parallel for reduction(+ : s)
for (auto i = 1; i <= n; i++) {
s += i;
}
// stop timer
auto t1 = omp_get_wtime();
std::cout << "sum: " << s << std::endl;
std::cout << "elapsed wall clock time: " << t1 - t0 << " seconds" << std::endl;
return 0;
}
```
`CMakeLists.txt`檢測OpenMP并行環境方面基本沒有變化,除了有一個額外的安裝目標:
```cmake
# set minimum cmake version
cmake_minimum_required(VERSION 3.9 FATAL_ERROR)
# project name and language
project(recipe-02 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
include(GNUInstallDirs)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/${CMAKE_INSTALL_BINDIR})
find_package(OpenMP REQUIRED)
add_executable(example example.cpp)
target_link_libraries(example
PUBLIC
OpenMP::OpenMP_CXX
)
install(
TARGETS
example
DESTINATION
${CMAKE_INSTALL_BINDIR}
)
```
## 具體實施
通過以下步驟,我們將設法交叉編譯一個OpenMP并行化的Windows可執行文件:
1. 創建一個包含`example.cpp`和`CMakeLists.txt`的目錄。
2. 我們將使用與之前例子相同的`toolchain.cmake`:
```cmake
# the name of the target operating system
set(CMAKE_SYSTEM_NAME Windows)
# which compilers to use
set(CMAKE_CXX_COMPILER i686-w64-mingw32-g++)
# adjust the default behaviour of the find commands:
# search headers and libraries in the target environment
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
# search programs in the host environment
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
```
3. 將`CMAKE_CXX_COMPILER`設置為對應的編譯器(路徑)。
4. 然后,通過`CMAKE_TOOLCHAIN_FILE`指向工具鏈文件來配置代碼(本例中,使用了從源代碼構建的MXE編譯器):
```shell
$ mkdir -p build
$ cd build
$ cmake -D CMAKE_TOOLCHAIN_FILE=toolchain.cmake ..
-- The CXX compiler identification is GNU 5.4.0
-- Check for working CXX compiler: /home/user/mxe/usr/bin/i686-w64-mingw32.static-g++
-- Check for working CXX compiler: /home/user/mxe/usr/bin/i686-w64-mingw32.static-g++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Found OpenMP_CXX: -fopenmp (found version "4.0")
-- Found OpenMP: TRUE (found version "4.0")
-- Configuring done
-- Generating done
-- Build files have been written to: /home/user/cmake-recipes/chapter-13/recipe-02/cxx-example/build
```
5. 構建可執行文件:
```shell
$ cmake --build .
Scanning dependencies of target example
[ 50%] Building CXX object CMakeFiles/example.dir/example.cpp.obj
[100%] Linking CXX executable bin/example.exe
[100%] Built target example
```
6. 將`example.exe`拷貝到Windows環境下。
7. Windows環境下,將看到如下的輸出:
```shell
$ set OMP_NUM_THREADS=1
$ example.exe 1000000000
number of available processors: 2
number of threads: 1
we will form sum of numbers from 1 to 1000000000
sum: 500000000500000000
elapsed wall clock time: 2.641 seconds
$ set OMP_NUM_THREADS=2
$ example.exe 1000000000
number of available processors: 2
number of threads: 2
we will form sum of numbers from 1 to 1000000000
sum: 500000000500000000
elapsed wall clock time: 1.328 seconds
```
8. 正如我們所看到的,二進制文件可以在Windows上工作,而且由于OpenMP并行化,我們可以觀察到加速效果!
## 工作原理
我們已經成功地使用一個簡單的工具鏈進行交叉編譯了一個可執行文件,并可以在Windows平臺上并行執行。我們可以通過設置`OMP_NUM_THREADS`來指定OpenMP線程的數量。從一個線程到兩個線程,我們觀察到運行時從2.6秒減少到1.3秒。有關工具鏈文件的討論,請參閱前面的示例。
## 更多信息
可以交叉編譯一組目標平臺(例如:Android),可以參考:https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
- Introduction
- 前言
- 第0章 配置環境
- 0.1 獲取代碼
- 0.2 Docker鏡像
- 0.3 安裝必要的軟件
- 0.4 測試環境
- 0.5 上報問題并提出改進建議
- 第1章 從可執行文件到庫
- 1.1 將單個源文件編譯為可執行文件
- 1.2 切換生成器
- 1.3 構建和鏈接靜態庫和動態庫
- 1.4 用條件句控制編譯
- 1.5 向用戶顯示選項
- 1.6 指定編譯器
- 1.7 切換構建類型
- 1.8 設置編譯器選項
- 1.9 為語言設定標準
- 1.10 使用控制流
- 第2章 檢測環境
- 2.1 檢測操作系統
- 2.2 處理與平臺相關的源代碼
- 2.3 處理與編譯器相關的源代碼
- 2.4 檢測處理器體系結構
- 2.5 檢測處理器指令集
- 2.6 為Eigen庫使能向量化
- 第3章 檢測外部庫和程序
- 3.1 檢測Python解釋器
- 3.2 檢測Python庫
- 3.3 檢測Python模塊和包
- 3.4 檢測BLAS和LAPACK數學庫
- 3.5 檢測OpenMP的并行環境
- 3.6 檢測MPI的并行環境
- 3.7 檢測Eigen庫
- 3.8 檢測Boost庫
- 3.9 檢測外部庫:Ⅰ. 使用pkg-config
- 3.10 檢測外部庫:Ⅱ. 自定義find模塊
- 第4章 創建和運行測試
- 4.1 創建一個簡單的單元測試
- 4.2 使用Catch2庫進行單元測試
- 4.3 使用Google Test庫進行單元測試
- 4.4 使用Boost Test進行單元測試
- 4.5 使用動態分析來檢測內存缺陷
- 4.6 預期測試失敗
- 4.7 使用超時測試運行時間過長的測試
- 4.8 并行測試
- 4.9 運行測試子集
- 4.10 使用測試固件
- 第5章 配置時和構建時的操作
- 5.1 使用平臺無關的文件操作
- 5.2 配置時運行自定義命令
- 5.3 構建時運行自定義命令:Ⅰ. 使用add_custom_command
- 5.4 構建時運行自定義命令:Ⅱ. 使用add_custom_target
- 5.5 構建時為特定目標運行自定義命令
- 5.6 探究編譯和鏈接命令
- 5.7 探究編譯器標志命令
- 5.8 探究可執行命令
- 5.9 使用生成器表達式微調配置和編譯
- 第6章 生成源碼
- 6.1 配置時生成源碼
- 6.2 使用Python在配置時生成源碼
- 6.3 構建時使用Python生成源碼
- 6.4 記錄項目版本信息以便報告
- 6.5 從文件中記錄項目版本
- 6.6 配置時記錄Git Hash值
- 6.7 構建時記錄Git Hash值
- 第7章 構建項目
- 7.1 使用函數和宏重用代碼
- 7.2 將CMake源代碼分成模塊
- 7.3 編寫函數來測試和設置編譯器標志
- 7.4 用指定參數定義函數或宏
- 7.5 重新定義函數和宏
- 7.6 使用廢棄函數、宏和變量
- 7.7 add_subdirectory的限定范圍
- 7.8 使用target_sources避免全局變量
- 7.9 組織Fortran項目
- 第8章 超級構建模式
- 8.1 使用超級構建模式
- 8.2 使用超級構建管理依賴項:Ⅰ.Boost庫
- 8.3 使用超級構建管理依賴項:Ⅱ.FFTW庫
- 8.4 使用超級構建管理依賴項:Ⅲ.Google Test框架
- 8.5 使用超級構建支持項目
- 第9章 語言混合項目
- 9.1 使用C/C++庫構建Fortran項目
- 9.2 使用Fortran庫構建C/C++項目
- 9.3 使用Cython構建C++和Python項目
- 9.4 使用Boost.Python構建C++和Python項目
- 9.5 使用pybind11構建C++和Python項目
- 9.6 使用Python CFFI混合C,C++,Fortran和Python
- 第10章 編寫安裝程序
- 10.1 安裝項目
- 10.2 生成輸出頭文件
- 10.3 輸出目標
- 10.4 安裝超級構建
- 第11章 打包項目
- 11.1 生成源代碼和二進制包
- 11.2 通過PyPI發布使用CMake/pybind11構建的C++/Python項目
- 11.3 通過PyPI發布使用CMake/CFFI構建C/Fortran/Python項目
- 11.4 以Conda包的形式發布一個簡單的項目
- 11.5 將Conda包作為依賴項發布給項目
- 第12章 構建文檔
- 12.1 使用Doxygen構建文檔
- 12.2 使用Sphinx構建文檔
- 12.3 結合Doxygen和Sphinx
- 第13章 選擇生成器和交叉編譯
- 13.1 使用CMake構建Visual Studio 2017項目
- 13.2 交叉編譯hello world示例
- 13.3 使用OpenMP并行化交叉編譯Windows二進制文件
- 第14章 測試面板
- 14.1 將測試部署到CDash
- 14.2 CDash顯示測試覆蓋率
- 14.3 使用AddressSanifier向CDash報告內存缺陷
- 14.4 使用ThreadSaniiser向CDash報告數據爭用
- 第15章 使用CMake構建已有項目
- 15.1 如何開始遷移項目
- 15.2 生成文件并編寫平臺檢查
- 15.3 檢測所需的鏈接和依賴關系
- 15.4 復制編譯標志
- 15.5 移植測試
- 15.6 移植安裝目標
- 15.7 進一步遷移的措施
- 15.8 項目轉換為CMake的常見問題
- 第16章 可能感興趣的書
- 16.1 留下評論——讓其他讀者知道你的想法