PBUF\_RAM類型的pbuf空間是通過內存堆分配而來的,這種類型的pbuf在協議棧中使用得最多,一般協議棧中要發送的數據都是采用這種形式,在申請這種pbuf內存塊的時候,協議棧會在管理的內存堆中根據需要的大小進行分配對應的內存空間,這種pbuf內存塊包含數據空間以及pbuf數據結構區域,在連續的RAM內存空間中。很多人又會有疑問了,不是說各個協議層都有首部嗎,這些內存空間在哪呢?能想到這一層的讀者是非常聰明的,我很欣慰,你們有認真看前面的章節,內核申請這類型的pbuf時,也算上了協議首部的空間,當然是根據協議棧不同層次需要的首部進行申請,LwIP也使用一個枚舉類型對不同的協議棧分層需要的首部大小進行定義,關于各層間的首部區域我們在后續講解,此處只需知道即可。那么申請這種pbuf是怎么樣申請的呢?具體見:
**申請PBUF_RAM類型的pbuf(偽代碼)**
```
1 /* 函數原型 */
2 struct pbuf *
3 pbuf_alloc(pbuf_layer layer, u16_t length, pbuf_type type);
4
5 //例子
6 struct pbuf *p;
7
8 p = pbuf_alloc(PBUF_RAW, (u16_t)(req_len + 1), PBUF_RAM);
9
10 p = pbuf_alloc(PBUF_TRANSPORT, 1472, PBUF_RAM);
```
PBUF\_RAM類型的pbuf示意圖具體見圖 6?1,圖中可以看出整個pbuf就是一個連續的內存區域,layer(offset)就是各層協議的首部,如TCP報文首部、IP首部、以太網幀首部等,預留出來的這些空間是為了在各個協議層中靈活地處理這些數據,當然layer的大小也可以是0,具體是多少就與數據包的申請方式有關,具體在后面的章節中講解。

圖 6?1PBUF\_RAM類型的pbuf
- 說明
- 第1章:網絡協議簡介
- 1.1:常用網絡協議
- 1.2:網絡協議的分層模型
- 1.3:協議層報文間的封裝與拆封
- 第2章:LwIP簡介
- 2.1:LwIP的優缺點
- 2.2:LwIP的文件說明
- 2.2.1:如何獲取LwIP源碼文件
- 2.2.2:LwIP文件說明
- 2.3:查看LwIP的說明文檔
- 2.4:使用vscode查看源碼
- 2.4.1:查看文件中的符號列表(函數列表)
- 2.4.2:函數定義跳轉
- 2.5:LwIP源碼里的example
- 2.6:LwIP的三種編程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:開發平臺介紹
- 3.1:以太網簡介
- 3.1.1:PHY層
- 3.1.2:MAC子層
- 3.2:STM32的ETH外設
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件設計
- 3.6:軟件設計
- 3.6.1:獲取STM32的裸機工程模板
- 3.6.2:添加bsp_eth.c與bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的網絡接口管理
- 4.1:netif結構體
- 4.2:netif使用
- 4.3:與netif相關的底層函數
- 4.4:ethernetif.c文件內容
- 4.4.1:ethernetif數據結構
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的內存管理
- 5.1:幾種內存分配策略
- 5.1.1:固定大小的內存塊
- 5.1.2:可變長度分配
- 5.2:動態內存池(POOL)
- 5.2.1:內存池的預處理
- 5.2.2:內存池的初始化
- 5.2.3:內存分配
- 5.2.4:內存釋放
- 5.3:動態內存堆
- 5.3.1:內存堆的組織結構
- 5.3.2:內存堆初始化
- 5.3.3:內存分配
- 5.3.4:內存釋放
- 5.4:使用C庫的malloc和free來管理內存
- 5.5:LwIP中的配置
- 第6章:網絡數據包
- 6.1:TCP/IP協議的分層思想
- 6.2:LwIP的線程模型
- 6.3:pbuf結構體說明
- 6.4:pbuf的類型
- 6.4.1:PBUF_RAM類型的pbuf
- 6.4.2:PBUF_POOL類型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF類型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函數
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:網卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:無操作系統移植LwIP
- 7.1:將LwIP添加到裸機工程
- 7.2:移植頭文件
- 7.3:移植網卡驅動
- 7.4:LwIP時基
- 7.5:協議棧初始化
- 7.6:獲取數據包
- 7.6.1:查詢方式
- 7.6.2:ping命令詳解
- 7.6.3:中斷方式
- 第8章:有操作系統移植LwIP
- 8.1:LwIP中添加操作系統
- 8.1.1:拷貝FreeRTOS源碼到工程文件夾
- 8.1.2:添加FreeRTOS源碼到工程組文件夾
- 8.1.3:指定FreeRTOS頭文件的路徑
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的編寫
- 8.4:網卡底層的編寫
- 8.5:協議棧初始化
- 8.6:移植后使用ping測試基本響應
- 第9章:LwIP一探究竟
- 9.1:網卡接收數據的流程
- 9.2:內核超時處理
- 9.2.1:sys_timeo結構體與超時鏈表
- 9.2.2:注冊超時事件
- 9.2.3:超時檢查
- 9.3:tcpip_thread線程
- 9.4:LwIP中的消息
- 9.4.1:消息結構
- 9.4.2:數據包消息
- 9.4.3:API消息
- 9.5:揭開LwIP神秘的面紗
- 第10章:ARP協議
- 10.1:鏈路層概述
- 10.2:MAC地址的基本概念
- 10.3:初識ARP
- 10.4:以太網幀結構
- 10.5:IP地址映射為物理地址
- 10.6:ARP緩存表
- 10.7:ARP緩存表的超時處理
- 10.8:ARP報文
- 10.9:發送ARP請求包
- 10.10:數據包接收流程
- 10.10.1:以太網之數據包接收
- 10.10.2:ARP數據包處理
- 10.10.3:更新ARP緩存表
- 10.11:數據包發送流程
- 10.11.1:etharp_output()函數
- 10.11.2:etharp_output_to_arp_index()函數
- 10.11.3:etharp_query()函數
- 第11章:IP協議
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址編址
- 11.1.3:特殊IP地址