# 裝飾器
由于函數也是一個對象,而且函數對象可以被賦值給變量,所以,通過變量也能調用該函數。
```
>>> def now():
... print '2013-12-25'
...
>>> f = now
>>> f()
2013-12-25
```
函數對象有一個`__name__`屬性,可以拿到函數的名字:
```
>>> now.__name__
'now'
>>> f.__name__
'now'
```
現在,假設我們要增強`now()`函數的功能,比如,在函數調用前后自動打印日志,但又不希望修改`now()`函數的定義,這種在代碼運行期間動態增加功能的方式,稱之為“裝飾器”(Decorator)。
本質上,decorator就是一個返回函數的高階函數。所以,我們要定義一個能打印日志的decorator,可以定義如下:
```
def log(func):
def wrapper(*args, **kw):
print 'call %s():' % func.__name__
return func(*args, **kw)
return wrapper
```
觀察上面的`log`,因為它是一個decorator,所以接受一個函數作為參數,并返回一個函數。我們要借助Python的@語法,把decorator置于函數的定義處:
```
@log
def now():
print '2013-12-25'
```
調用`now()`函數,不僅會運行`now()`函數本身,還會在運行`now()`函數前打印一行日志:
```
>>> now()
call now():
2013-12-25
```
把`@log`放到`now()`函數的定義處,相當于執行了語句:
```
now = log(now)
```
由于`log()`是一個decorator,返回一個函數,所以,原來的`now()`函數仍然存在,只是現在同名的now變量指向了新的函數,于是調用`now()`將執行新函數,即在`log()`函數中返回的`wrapper()`函數。
`wrapper()`函數的參數定義是`(*args, **kw)`,因此,`wrapper()`函數可以接受任意參數的調用。在`wrapper()`函數內,首先打印日志,再緊接著調用原始函數。
如果decorator本身需要傳入參數,那就需要編寫一個返回decorator的高階函數,寫出來會更復雜。比如,要自定義log的文本:
```
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print '%s %s():' % (text, func.__name__)
return func(*args, **kw)
return wrapper
return decorator
```
這個3層嵌套的decorator用法如下:
```
@log('execute')
def now():
print '2013-12-25'
```
執行結果如下:
```
>>> now()
execute now():
2013-12-25
```
和兩層嵌套的decorator相比,3層嵌套的效果是這樣的:
```
>>> now = log('execute')(now)
```
我們來剖析上面的語句,首先執行`log('execute')`,返回的是`decorator`函數,再調用返回的函數,參數是`now`函數,返回值最終是`wrapper`函數。
以上兩種decorator的定義都沒有問題,但還差最后一步。因為我們講了函數也是對象,它有`__name__`等屬性,但你去看經過decorator裝飾之后的函數,它們的`__name__`已經從原來的`'now'`變成了`'wrapper'`:
```
>>> now.__name__
'wrapper'
```
因為返回的那個`wrapper()`函數名字就是`'wrapper'`,所以,需要把原始函數的`__name__`等屬性復制到`wrapper()`函數中,否則,有些依賴函數簽名的代碼執行就會出錯。
不需要編寫`wrapper.__name__ = func.__name__`這樣的代碼,Python內置的`functools.wraps`就是干這個事的,所以,一個完整的decorator的寫法如下:
```
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print 'call %s():' % func.__name__
return func(*args, **kw)
return wrapper
```
或者針對帶參數的decorator:
```
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print '%s %s():' % (text, func.__name__)
return func(*args, **kw)
return wrapper
return decorator
```
`import functools`是導入`functools`模塊。模塊的概念稍候講解。現在,只需記住在定義`wrapper()`的前面加上`@functools.wraps(func)`即可。
### 小結
在面向對象(OOP)的設計模式中,decorator被稱為裝飾模式。OOP的裝飾模式需要通過繼承和組合來實現,而Python除了能支持OOP的decorator外,直接從語法層次支持decorator。Python的decorator可以用函數實現,也可以用類實現。
decorator可以增強函數的功能,定義起來雖然有點復雜,但使用起來非常靈活和方便。
請編寫一個decorator,能在函數調用的前后打印出`'begin call'`和`'end call'`的日志。
再思考一下能否寫出一個`@log`的decorator,使它既支持:
```
@log
def f():
pass
```
又支持:
```
@log('execute')
def f():
pass
```
- JavaScript教程
- JavaScript簡介
- 快速入門
- 基本語法
- 數據類型和變量
- 字符串
- 數組
- 對象
- 條件判斷
- 循環
- Map和Set
- iterable
- 函數
- 函數定義和調用
- 變量作用域
- 方法
- 高階函數
- map/reduce
- filter
- sort
- 閉包
- 箭頭函數
- generator
- 標準對象
- Date
- RegExp
- JSON
- 面向對象編程
- 創建對象
- 原型繼承
- 瀏覽器
- 瀏覽器對象
- 操作DOM
- 更新DOM
- 插入DOM
- 刪除DOM
- 操作表單
- 操作文件
- AJAX
- Promise
- Canvas
- jQuery
- 選擇器
- 層級選擇器
- 查找和過濾
- 操作DOM
- 修改DOM結構
- 事件
- 動畫
- 擴展
- underscore
- Collections
- Arrays
- Functions
- Objects
- Chaining
- Node.js
- 安裝Node.js和npm
- 第一個Node程序
- 模塊
- 基本模塊
- fs
- stream
- http
- buffer
- Web開發
- koa
- mysql
- swig
- 自動化工具
- 期末總結
- Python 2.7教程
- Python簡介
- 安裝Python
- Python解釋器
- 第一個Python程序
- 使用文本編輯器
- 輸入和輸出
- Python基礎
- 數據類型和變量
- 字符串和編碼
- 使用list和tuple
- 條件判斷和循環
- 使用dict和set
- 函數
- 調用函數
- 定義函數
- 函數的參數
- 遞歸函數
- 高級特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 函數式編程
- 高階函數
- map/reduce
- filter
- sorted
- 返回函數
- 匿名函數
- 裝飾器
- 偏函數
- 模塊
- 使用模塊
- 安裝第三方模塊
- 使用__future__
- 面向對象編程
- 類和實例
- 訪問限制
- 繼承和多態
- 獲取對象信息
- 面向對象高級編程
- 使用__slots__
- 使用@property
- 多重繼承
- 定制類
- 使用元類
- 錯誤、調試和測試
- 錯誤處理
- 調試
- 單元測試
- 文檔測試
- IO編程
- 文件讀寫
- 操作文件和目錄
- 序列化
- 進程和線程
- 多進程
- 多線程
- ThreadLocal
- 進程 vs. 線程
- 分布式進程
- 正則表達式
- 常用內建模塊
- collections
- base64
- struct
- hashlib
- itertools
- XML
- HTMLParser
- 常用第三方模塊
- PIL
- 圖形界面
- 網絡編程
- TCP/IP簡介
- TCP編程
- UDP編程
- 電子郵件
- SMTP發送郵件
- POP3收取郵件
- 訪問數據庫
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web開發
- HTTP協議簡介
- HTML簡介
- WSGI接口
- 使用Web框架
- 使用模板
- 協程
- gevent
- 實戰
- Day 1 - 搭建開發環境
- Day 2 - 編寫數據庫模塊
- Day 3 - 編寫ORM
- Day 4 - 編寫Model
- Day 5 - 編寫Web框架
- Day 6 - 添加配置文件
- Day 7 - 編寫MVC
- Day 8 - 構建前端
- Day 9 - 編寫API
- Day 10 - 用戶注冊和登錄
- Day 11 - 編寫日志創建頁
- Day 12 - 編寫日志列表頁
- Day 13 - 提升開發效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 編寫移動App
- 期末總結
- Python3教程
- Python簡介
- 安裝Python
- Python解釋器
- 第一個Python程序
- 使用文本編輯器
- Python代碼運行助手
- 輸入和輸出
- Python基礎
- 數據類型和變量
- 字符串和編碼
- 使用list和tuple
- 條件判斷
- 循環
- 使用dict和set
- 函數
- 調用函數
- 定義函數
- 函數的參數
- 遞歸函數
- 高級特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 迭代器
- 函數式編程
- 高階函數
- map/reduce
- filter
- sorted
- 返回函數
- 匿名函數
- 裝飾器
- 偏函數
- 模塊
- 使用模塊
- 安裝第三方模塊
- 面向對象編程
- 類和實例
- 訪問限制
- 繼承和多態
- 獲取對象信息
- 實例屬性和類屬性
- 面向對象高級編程
- 使用__slots__
- 使用@property
- 多重繼承
- 定制類
- 使用枚舉類
- 使用元類
- 錯誤、調試和測試
- 錯誤處理
- 調試
- 單元測試
- 文檔測試
- IO編程
- 文件讀寫
- StringIO和BytesIO
- 操作文件和目錄
- 序列化
- 進程和線程
- 多進程
- 多線程
- ThreadLocal
- 進程 vs. 線程
- 分布式進程
- 正則表達式
- 常用內建模塊
- datetime
- collections
- base64
- struct
- hashlib
- itertools
- XML
- HTMLParser
- urllib
- 常用第三方模塊
- PIL
- virtualenv
- 圖形界面
- 網絡編程
- TCP/IP簡介
- TCP編程
- UDP編程
- 電子郵件
- SMTP發送郵件
- POP3收取郵件
- 訪問數據庫
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web開發
- HTTP協議簡介
- HTML簡介
- WSGI接口
- 使用Web框架
- 使用模板
- 異步IO
- 協程
- asyncio
- async/await
- aiohttp
- 實戰
- Day 1 - 搭建開發環境
- Day 2 - 編寫Web App骨架
- Day 3 - 編寫ORM
- Day 4 - 編寫Model
- Day 5 - 編寫Web框架
- Day 6 - 編寫配置文件
- Day 7 - 編寫MVC
- Day 8 - 構建前端
- Day 9 - 編寫API
- Day 10 - 用戶注冊和登錄
- Day 11 - 編寫日志創建頁
- Day 12 - 編寫日志列表頁
- Day 13 - 提升開發效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 編寫移動App
- FAQ
- 期末總結
- Git教程
- Git簡介
- Git的誕生
- 集中式vs分布式
- 安裝Git
- 創建版本庫
- 時光機穿梭
- 版本回退
- 工作區和暫存區
- 管理修改
- 撤銷修改
- 刪除文件
- 遠程倉庫
- 添加遠程庫
- 從遠程庫克隆
- 分支管理
- 創建與合并分支
- 解決沖突
- 分支管理策略
- Bug分支
- Feature分支
- 多人協作
- 標簽管理
- 創建標簽
- 操作標簽
- 使用GitHub
- 自定義Git
- 忽略特殊文件
- 配置別名
- 搭建Git服務器
- 期末總結