# collections
collections是Python內建的一個集合模塊,提供了許多有用的集合類。
### namedtuple
我們知道`tuple`可以表示不變集合,例如,一個點的二維坐標就可以表示成:
```
>>> p = (1, 2)
```
但是,看到`(1, 2)`,很難看出這個`tuple`是用來表示一個坐標的。
定義一個class又小題大做了,這時,`namedtuple`就派上了用場:
```
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
```
`namedtuple`是一個函數,它用來創建一個自定義的`tuple`對象,并且規定了`tuple`元素的個數,并可以用屬性而不是索引來引用`tuple`的某個元素。
這樣一來,我們用`namedtuple`可以很方便地定義一種數據類型,它具備tuple的不變性,又可以根據屬性來引用,使用十分方便。
可以驗證創建的`Point`對象是`tuple`的一種子類:
```
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
```
類似的,如果要用坐標和半徑表示一個圓,也可以用`namedtuple`定義:
```
# namedtuple('名稱', [屬性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
```
### deque
使用`list`存儲數據時,按索引訪問元素很快,但是插入和刪除元素就很慢了,因為`list`是線性存儲,數據量大的時候,插入和刪除效率很低。
deque是為了高效實現插入和刪除操作的雙向列表,適合用于隊列和棧:
```
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
```
`deque`除了實現list的`append()`和`pop()`外,還支持`appendleft()`和`popleft()`,這樣就可以非常高效地往頭部添加或刪除元素。
### defaultdict
使用`dict`時,如果引用的Key不存在,就會拋出`KeyError`。如果希望key不存在時,返回一個默認值,就可以用`defaultdict`:
```
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默認值
'N/A'
```
注意默認值是調用函數返回的,而函數在創建`defaultdict`對象時傳入。
除了在Key不存在時返回默認值,`defaultdict`的其他行為跟`dict`是完全一樣的。
### OrderedDict
使用`dict`時,Key是無序的。在對`dict`做迭代時,我們無法確定Key的順序。
如果要保持Key的順序,可以用`OrderedDict`:
```
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是無序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
```
注意,`OrderedDict`的Key會按照插入的順序排列,不是Key本身排序:
```
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的順序返回
['z', 'y', 'x']
```
`OrderedDict`可以實現一個FIFO(先進先出)的dict,當容量超出限制時,先刪除最早添加的Key:
```
from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity
def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print 'remove:', last
if containsKey:
del self[key]
print 'set:', (key, value)
else:
print 'add:', (key, value)
OrderedDict.__setitem__(self, key, value)
```
### Counter
`Counter`是一個簡單的計數器,例如,統計字符出現的個數:
```
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
```
`Counter`實際上也是`dict`的一個子類,上面的結果可以看出,字符`'g'`、`'m'`、`'r'`各出現了兩次,其他字符各出現了一次。
### 小結
`collections`模塊提供了一些有用的集合類,可以根據需要選用。
- JavaScript教程
- JavaScript簡介
- 快速入門
- 基本語法
- 數據類型和變量
- 字符串
- 數組
- 對象
- 條件判斷
- 循環
- Map和Set
- iterable
- 函數
- 函數定義和調用
- 變量作用域
- 方法
- 高階函數
- map/reduce
- filter
- sort
- 閉包
- 箭頭函數
- generator
- 標準對象
- Date
- RegExp
- JSON
- 面向對象編程
- 創建對象
- 原型繼承
- 瀏覽器
- 瀏覽器對象
- 操作DOM
- 更新DOM
- 插入DOM
- 刪除DOM
- 操作表單
- 操作文件
- AJAX
- Promise
- Canvas
- jQuery
- 選擇器
- 層級選擇器
- 查找和過濾
- 操作DOM
- 修改DOM結構
- 事件
- 動畫
- 擴展
- underscore
- Collections
- Arrays
- Functions
- Objects
- Chaining
- Node.js
- 安裝Node.js和npm
- 第一個Node程序
- 模塊
- 基本模塊
- fs
- stream
- http
- buffer
- Web開發
- koa
- mysql
- swig
- 自動化工具
- 期末總結
- Python 2.7教程
- Python簡介
- 安裝Python
- Python解釋器
- 第一個Python程序
- 使用文本編輯器
- 輸入和輸出
- Python基礎
- 數據類型和變量
- 字符串和編碼
- 使用list和tuple
- 條件判斷和循環
- 使用dict和set
- 函數
- 調用函數
- 定義函數
- 函數的參數
- 遞歸函數
- 高級特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 函數式編程
- 高階函數
- map/reduce
- filter
- sorted
- 返回函數
- 匿名函數
- 裝飾器
- 偏函數
- 模塊
- 使用模塊
- 安裝第三方模塊
- 使用__future__
- 面向對象編程
- 類和實例
- 訪問限制
- 繼承和多態
- 獲取對象信息
- 面向對象高級編程
- 使用__slots__
- 使用@property
- 多重繼承
- 定制類
- 使用元類
- 錯誤、調試和測試
- 錯誤處理
- 調試
- 單元測試
- 文檔測試
- IO編程
- 文件讀寫
- 操作文件和目錄
- 序列化
- 進程和線程
- 多進程
- 多線程
- ThreadLocal
- 進程 vs. 線程
- 分布式進程
- 正則表達式
- 常用內建模塊
- collections
- base64
- struct
- hashlib
- itertools
- XML
- HTMLParser
- 常用第三方模塊
- PIL
- 圖形界面
- 網絡編程
- TCP/IP簡介
- TCP編程
- UDP編程
- 電子郵件
- SMTP發送郵件
- POP3收取郵件
- 訪問數據庫
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web開發
- HTTP協議簡介
- HTML簡介
- WSGI接口
- 使用Web框架
- 使用模板
- 協程
- gevent
- 實戰
- Day 1 - 搭建開發環境
- Day 2 - 編寫數據庫模塊
- Day 3 - 編寫ORM
- Day 4 - 編寫Model
- Day 5 - 編寫Web框架
- Day 6 - 添加配置文件
- Day 7 - 編寫MVC
- Day 8 - 構建前端
- Day 9 - 編寫API
- Day 10 - 用戶注冊和登錄
- Day 11 - 編寫日志創建頁
- Day 12 - 編寫日志列表頁
- Day 13 - 提升開發效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 編寫移動App
- 期末總結
- Python3教程
- Python簡介
- 安裝Python
- Python解釋器
- 第一個Python程序
- 使用文本編輯器
- Python代碼運行助手
- 輸入和輸出
- Python基礎
- 數據類型和變量
- 字符串和編碼
- 使用list和tuple
- 條件判斷
- 循環
- 使用dict和set
- 函數
- 調用函數
- 定義函數
- 函數的參數
- 遞歸函數
- 高級特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 迭代器
- 函數式編程
- 高階函數
- map/reduce
- filter
- sorted
- 返回函數
- 匿名函數
- 裝飾器
- 偏函數
- 模塊
- 使用模塊
- 安裝第三方模塊
- 面向對象編程
- 類和實例
- 訪問限制
- 繼承和多態
- 獲取對象信息
- 實例屬性和類屬性
- 面向對象高級編程
- 使用__slots__
- 使用@property
- 多重繼承
- 定制類
- 使用枚舉類
- 使用元類
- 錯誤、調試和測試
- 錯誤處理
- 調試
- 單元測試
- 文檔測試
- IO編程
- 文件讀寫
- StringIO和BytesIO
- 操作文件和目錄
- 序列化
- 進程和線程
- 多進程
- 多線程
- ThreadLocal
- 進程 vs. 線程
- 分布式進程
- 正則表達式
- 常用內建模塊
- datetime
- collections
- base64
- struct
- hashlib
- itertools
- XML
- HTMLParser
- urllib
- 常用第三方模塊
- PIL
- virtualenv
- 圖形界面
- 網絡編程
- TCP/IP簡介
- TCP編程
- UDP編程
- 電子郵件
- SMTP發送郵件
- POP3收取郵件
- 訪問數據庫
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web開發
- HTTP協議簡介
- HTML簡介
- WSGI接口
- 使用Web框架
- 使用模板
- 異步IO
- 協程
- asyncio
- async/await
- aiohttp
- 實戰
- Day 1 - 搭建開發環境
- Day 2 - 編寫Web App骨架
- Day 3 - 編寫ORM
- Day 4 - 編寫Model
- Day 5 - 編寫Web框架
- Day 6 - 編寫配置文件
- Day 7 - 編寫MVC
- Day 8 - 構建前端
- Day 9 - 編寫API
- Day 10 - 用戶注冊和登錄
- Day 11 - 編寫日志創建頁
- Day 12 - 編寫日志列表頁
- Day 13 - 提升開發效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 編寫移動App
- FAQ
- 期末總結
- Git教程
- Git簡介
- Git的誕生
- 集中式vs分布式
- 安裝Git
- 創建版本庫
- 時光機穿梭
- 版本回退
- 工作區和暫存區
- 管理修改
- 撤銷修改
- 刪除文件
- 遠程倉庫
- 添加遠程庫
- 從遠程庫克隆
- 分支管理
- 創建與合并分支
- 解決沖突
- 分支管理策略
- Bug分支
- Feature分支
- 多人協作
- 標簽管理
- 創建標簽
- 操作標簽
- 使用GitHub
- 自定義Git
- 忽略特殊文件
- 配置別名
- 搭建Git服務器
- 期末總結